The ideal candidate will have a total of 12+ years of IT experience with extensive expertise in Python and leading AI/ML libraries (e.g., TensorFlow, PyTorch, Scikit-learn) and will be adept at open-source optimization (e.g., Pyomo, OR-Tools) to handle complex scheduling, routing, and resource allocation tasks. Data engineering proficiency including Apache Spark, Hadoop, and Kafka is paramount for building and managing data lakes that store both structured and unstructured data, supporting real-time data processing and analytics. This individual should also have experience deploying AI solutions in on-premises (Docker, Kubernetes) and cloud environments (AWS, GCP) with strong knowledge of DevOps (CI/CD, Git), security, and performance optimization. Familiarity with LLM and NLP frameworks such as SpaCy and NLTK is critical for developing Generative AI, chatbots, and automated customer service systems. Ultimately, expertise in a broad range of data engineering and AI technologies is essential for driving innovation and optimizing planning processes within the logistics industry, particularly in port and terminal operations.
* Der Gehaltsbenchmark wird auf Basis der Zielgehälter bei führenden Unternehmen in der jeweiligen Branche ermittelt und dient Premium-Nutzer:innen als Richtlinie zur Bewertung offener Positionen und als Orientierungshilfe bei Gehaltsverhandlungen. Der Gehaltsbenchmark wird nicht direkt vom Unternehmen angegeben. Er kann deutlich über bzw. unter diesem Wert liegen.