Job Search and Career Advice Platform

¡Activa las notificaciones laborales por email!

Lead Machine Learning Engineer, Recommendation Systems

Launch Potato

Ciudad de México

Híbrido

MXN 1,835,000 - 2,386,000

Jornada completa

Hace 30+ días

Genera un currículum adaptado en cuestión de minutos

Consigue la entrevista y gana más. Más información

Descripción de la vacante

A leading technology company is seeking a Lead Machine Learning Engineer specializing in recommendation systems. In this role, you will build and optimize systems serving over 100M predictions daily, significantly impacting user engagement and business growth. The ideal candidate has extensive experience in ML system deployment, ranking algorithms, and partnership with cross-functional teams. Join a diverse remote-first team that's making a difference!

Formación

  • 7+ years building and scaling production ML systems with measurable business impact.
  • Fluent in ranking algorithms and proficient in turning data into engagement and conversions.
  • Strong background in collaborative filtering, learning-to-rank, and deep learning.

Responsabilidades

  • Drive business growth by building and optimizing recommendation systems.
  • Own modeling, feature engineering, data pipelines, and experimentation.

Conocimientos

Building and scaling production ML systems
Ranking algorithms
Python proficiency
ML frameworks (TensorFlow or PyTorch)
SQL and data warehouses
Distributed computing (Spark, Ray)
A/B testing platforms
Descripción del empleo
Lead Machine Learning Engineer, Recommendation Systems

As The Discovery and Conversion Company, our mission is to connect consumers with the world’s leading brands through data-driven content and technology.

Headquartered in South Florida with a remote-first team spanning over 15 countries, we’ve built a high-growth, high-performance culture where speed, ownership, and measurable impact drive success.

WHY JOIN US?

At Launch Potato, you’ll accelerate your career by owning outcomes, moving fast, and driving impact with a global team of high-performers.

We convert audience attention into action through data, machine learning, and continuous optimization.

We’re hiring a Machine Learning Engineer (Recommendation Systems) to build the personalization engine behind our portfolio of brands. You’ll design, deploy, and scale ML systems that power real-time recommendations across millions of user journeys. This role gives you the chance to work on systems serving 100M+ predictions daily, directly impacting engagement, retention, and revenue at scale.

MUST HAVE

You’ve shipped large-scale ML systems into production that power personalization at scale. You’re fluent in ranking algorithms and know how to turn data into engagement and conversions. Specifically:

  • 7+ years building and scaling production ML systems with measurable business impact
  • Strong background in ranking algorithms (collaborative filtering, learning-to-rank, deep learning)
  • Proficiency with Python and ML frameworks (TensorFlow or PyTorch)
  • Skilled with SQL and modern data warehouses (Snowflake, BigQuery, Redshift) plus data lakes
  • Familiarity with distributed computing (Spark, Ray) and LLM/AI Agent frameworks
  • Track record of improving business KPIs via ML-powered personalization
  • Experience with A/B testing platforms and experiment logging best practices
YOUR ROLE

Your mission: Drive business growth by building and optimizing the recommendation systems that personalize experience for millions of users daily. You’ll own the modeling, feature engineering, data pipelines, and experimentation that make personalization smarter, faster, and more impactful.

OUTCOMES
  • Build and deploy ML models serving 100M+ predictions per day to personalize user experiences at scale
  • Enhance data processing pipelines (Spark, Beam, Dask) with efficiency and reliability improvements
  • Design ranking algorithms that balance relevance, diversity, and revenue
  • Deliver real-time personalization with latency <50ms across key product surfaces
  • Run statistically rigorous A/B tests to measure true business impact
  • Optimize for latency, throughput, and cost efficiency in production
  • Partner with product, engineering, and analytics to launch high-impact personalization features
  • Implement monitoring systems and maintain clear ownership for model reliability
COMPETENCIES
  • Technical Mastery:You know ML architecture, deployment, and tradeoffs inside out
  • Experimentation Infrastructure:You set up systems for rapid testing and retraining (MLflow, W&B)
  • Impact-Driven:You design models that move revenue, retention, or engagement
  • Collaborative:You thrive working with engineers, PMs, and analysts to scope features
  • Analytical Thinking:You break down data trends and design rigorous test methodologies
  • Ownership Mentality:You own your models post-deployment and continuously improve them
  • Execution-Oriented:You deliver production-grade systems quickly without sacrificing rigor
  • Curious & Innovative:You stay on top of ML advances and apply them to personalization

Want to accelerate your career? Apply now!

Since day one, we've been committed to having a diverse, inclusive team and culture. We are proud to be an Equal Employment Opportunity company. We value diversity, equity, and inclusion.

We do not discriminate based on race, religion, color, national origin, gender (including pregnancy, childbirth, or related medical conditions), sexual orientation, gender identity, gender expression, age, status as a protected veteran, status as an individual with a disability, or other applicable legally protected characteristics.

Equal opportunity employer. We celebrate diversity and are committed to creating an inclusive environment for all employees.

Consigue la evaluación confidencial y gratuita de tu currículum.
o arrastra un archivo en formato PDF, DOC, DOCX, ODT o PAGES de hasta 5 MB.