
Activez les alertes d’offres d’emploi par e-mail !
Générez un CV personnalisé en quelques minutes
Décrochez un entretien et gagnez plus. En savoir plus
Une institution de recherche en informatique recherche un postdoctorant en neuroscience computationnelle pour développer des simulations de contrôle neuromécanique humaine. Le candidat devra avoir des compétences solides en programmation et une bonne connaissance des méthodes d'optimisation. Le poste est basé à l'Université Paris-Saclay et se concentrera sur des projets de recherche innovants avec des partenaires internationaux. Ce rôle propose des avantages tels que des repas subventionnés, un remboursement partiel des frais de transport et une flexibilité au travail.
The position is within the Collaborative Research in Computational Neuroscience (CRCNS) project co-funded by the ANR and the NSF, which brings together an interdisciplinary team across Université Paris-Saclay (France; PI: Bastien Berret) and University of Delaware (US; PIs: Fabrizio Sergi & Joshua Cashaback).
The project aims at better understanding the control of force, mechanical impedance (via co-contraction of antagonist muscles), and feedback responses (via delayed/noisy sensory information) using computational models.
The position is located at Université Paris-Saclay (France) in the group of Prof. Bastien Berret (within CIAMS laboratory and BOOST Inria team led by Taous Meriem Laleg). The lab generally focuses on human motor control with applications to sports and health and the postdoc’s group is especially interested in human-robot interaction.
With the help of the supervisor, the recruited person will develop computationally efficient methods to perform predictive simulations of human neuromechanical control (Julia language is preferred). They will propose extensions and improvements of the mathematical framework. Current tested methods involve stochastic optimal open-loop control approaches developed in [1-2] and tested or extended in [3-5]. They will eventually focus on integrating state-of-the-art muscle models in the simulations in collaboration with the partners. The candidate may also conduct experiments on human participants using various robotic interfaces and measurement techniques to test some predictions of the models, in close collaboration with other PhD/postdoc students from the lab.
[1] Berret, B., & Jean, F. . Efficient computation of optimal open-loop controls for stochastic systems. Automatica, 115, 108874.
[2] Leparoux, C., Bonalli, R., Hérissé, B., & Jean, F. . Statistical linearization for robust motion planning. Systems & Control Letters, 189, 105825.
[3] Berret, B., Verdel, D., Burdet, E., & Jean, F. . Co-contraction embodies uncertainty: An optimal feedforward strategy for robust motor control. PLOS Computational Biology, 20, e1012598.
[4] Berret, B., & Jean, F. . Stochastic optimal open-loop control as a theory of force and impedance planning via muscle co-contraction. PLOS Computational Biology, 16, e1007414.
[5] Berret, B., Conessa, A., Schweighofer, N., & Burdet, E. . Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision. PLOS Computational Biology, 17, e1009047.
Besides collaborations with the partners at University of Delaware, collaborations will be possible within the BOOST Inria team (Meriem Laleg), with ENSTA Paris (Frederic Jean), with Imperial College London (Etienne Burdet).
Main activities:
Additional activities:
Technical skills and level required : Strong programming skills are needed for this project. Prior knowledge related to nonlinear optimization, stochastic optimization, stochastic / ordinary differential equations will be appreciated.
Languages : English
Relational skills : Team worker (verbal communication, active listening, proactivity, motivation and commitment).
Other valued appreciated : Good level of spoken and written English
€2,788 gross per month