Remote Data Scientist - Fraud Prevention & Risk Modeling
Sardine
Remote
CAD 90.000 - 120.000
Vollzeit
Vor 2 Tagen
Sei unter den ersten Bewerbenden
Zusammenfassung
A leading fraud prevention company is looking for a Data Scientist to design and deploy data-driven solutions. The role requires 5+ years of experience in data science, a strong knowledge of Python and machine learning, and the ability to communicate complex findings effectively. This remote-first position offers generous compensation, flexible time off, and a range of perks including health insurance and home office stipends.
Leistungen
Generous compensation in cash and equity
Flexible paid time off
Health insurance for employees and dependents
MacBook Pro delivered to your door
One-time home office setup stipend
Qualifikationen
5+ years of experience in data science or quantitative modeling, ideally in risk or fraud contexts.
Strong working knowledge of Python, R, Spark, SQL, or equivalent.
Proven ability to explain complex technical findings to non-technical stakeholders and clients.
Aufgaben
Champion a data-first approach across internal teams and client engagements.
Build and deploy machine learning models to prevent fraud.
Work directly with clients to understand challenges and deliver data-driven solutions.
Kenntnisse
Data science experience
Machine learning
Python
Data modeling
Creative problem-solving
Ausbildung
Advanced degree in a quantitative field
Tools
R
SQL
Spark
Jobbeschreibung
A leading fraud prevention company is looking for a Data Scientist to design and deploy data-driven solutions. The role requires 5+ years of experience in data science, a strong knowledge of Python and machine learning, and the ability to communicate complex findings effectively. This remote-first position offers generous compensation, flexible time off, and a range of perks including health insurance and home office stipends.
* Der Gehaltsbenchmark wird auf Basis der Zielgehälter bei führenden Unternehmen in der jeweiligen Branche ermittelt und dient Premium-Nutzer:innen als Richtlinie zur Bewertung offener Positionen und als Orientierungshilfe bei Gehaltsverhandlungen. Der Gehaltsbenchmark wird nicht direkt vom Unternehmen angegeben. Er kann deutlich über bzw. unter diesem Wert liegen.