
Activez les alertes d’offres d’emploi par e-mail !
Générez un CV personnalisé en quelques minutes
Décrochez un entretien et gagnez plus. En savoir plus
Un institut de recherche en France est à la recherche d'un stagiaire pour travailler sur la simulation numérique des flux biologiques. Le candidat idéal aura une solide formation en mathématiques appliquées et une expérience en C++. Ce stage offre l'opportunité de contribuer à des projets innovants tout en bénéficiant de nombreux avantages, y compris des repas subventionnés et la possibilité de télétravail.
COMMEDIA is a common project-team linked to the following research institutions: Sorbonne Université, CNRS and Inria. The research activity of COMMEDIA focuses on the numerical simulation of bio-fluid flows in the human body, more specifically, blood flows in the cardiovascular system and air flows in the respiratory system. These simulations are intended to complement available clinical data with the following purpose: help clinicians or bio-engineers to enhance the understanding of physiological phenomena, to improve diagnosis and therapy planning or to optimize medical devices.
The proposed internship work will be conducted within the context of an industrial collaboration, to foster innovation.
Free-surface thin film flows are ubiquitous in biological systems, for instance, in mucus transport within the respiratory tract, the tear film on the eye, or blood thin films. Such flows occur when two immiscible fluids (e.g., water and air) interact and one of them adheres to a solid substrate as a thin layer.
The goal of this internship is to investigate the numerical approximation of lubrication theory based mathematical models with evaporation describing these systems (see, e.g., [2, 1, 3]). These models are generally based on nonlinear fourth-order degenerate parabolic equations written on surfaces. Mixed finite elementmethods will be explored for their numerical approximation in combination with inequality contraints to guarantee the non-negativeness of the approximation. The non-linearity will be treated via Newton’s iterations. The numerical studies will be conducted using FreeFem++.
[1] J.W. Barrett, J.F. Blowey, and H. Garcke. Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numerische Mathematik, 80 : 525–556, 1998.
[2] H.P. Greenspan. On the motion of a small viscous droplet that wets a surface. Journal of Fluid Mechanics, 84 : 125–143, 1978.
[3] Hangjie Ji and Thomas P. Witelski. Instability and dynamics of volatile thin films. Phys. Rev. Fluids, 3 : 024001, Feb 2018.