
Activez les alertes d’offres d’emploi par e-mail !
Générez un CV personnalisé en quelques minutes
Décrochez un entretien et gagnez plus. En savoir plus
Un institut de recherche en informatique recherche un doctorant pour le projet DynaNova, centré sur la dynamique conformationnelle et la communication allostérique dans les complexes macromoléculaires. Le candidat développera des architectures de réseaux de neurones graphiques novatrices et travaillera au sein d’une équipe interdisciplinaire. Ce poste offre également des avantages sociaux et une rémunération de 2300 € brut par mois, avec possibilité de télétravail après 6 mois.
This 3-yearPhD position is funded by the prestigiousProgramme Inria Quadrant (PIQ)for the project DynaNova , which aims to advance our understanding of conformational dynamics and allosteric communication in macromolecular complexes. The successful candidate will develop novel co-operative message-passing graph transformer architecture that learns conformational heterogeneityfrom molecular dynamics (MD) simulations by encoding the underlying dynamics of atomic interactions and correlations inmacromolecular complexes. You will join the Delta team at Inria (Université de Lorraine), working closely with Dr. Yasaman Karami and Dr. Hamed Khakzad , experts in conformational dynamics, allostery, and deep learning for structural biology. The team is growing and offers a highly interdisciplinary environment that brings together researchers in structural bioinformatics, computational chemistry, biophysics, and machine learning. We have access to major national HPC facilities (Grid5000, Jean Zay, GENCI allocations), including large-scale GPU resources.
Biomolecular function is driven by both structure and dynamics . Understanding long-range communication within macromolecular complexes is essential for deciphering molecular mechanisms and for developing therapeutic strategies. While deep learning has revolutionized structural prediction (e.g., AlphaFold2),allosteric signaling remains poorly understood, largely due to the scarcity of dynamic data. Our group recently developed :
Building on these foundations, DynaNova will leverage a large MD dataset (DynaRepo) and advanced GNN / Transformer models to uncover long-range communication pathways within macromolecular complexes. ThePhD candidatewill lead the development of an innovative deep learning framework to learn conformational heterogeneity and decode long-range communications within macromolecular complexes.
[1] Mokhtari, O., Bignon, E., Khakzad, H., & Karami, Y. . DynaRepo : the repository of macromolecular conformational dynamics.Nucleic Acids Research, gkaf1130.
[2]Bheemireddy, S., González-Alemán, R., Bignon, E., & Karami, Y. . Communication pathway analysis within protein-nucleic acid complexes.Journal of Chemical Theory and Computation.
[3]Mokhtari, O., Grudinin, S., Karami, Y., & Khakzad, H. . DynamicGT : a dynamic-aware geometric transformer model to predict protein binding interfaces in flexible and disordered regions.bioRxiv.
Rémunération
2300 € brut / mois