
¡Activa las notificaciones laborales por email!
Genera un currículum adaptado en cuestión de minutos
Consigue la entrevista y gana más. Más información
Una plataforma de programación en línea busca un Full Stack Engineer para diseñar y desplegar sistemas de IA, optimizar modelos y crear flujos de trabajo escalables. Se requiere experiencia en Python y marcos de ML. Se ofrece trabajo remoto en España o Polonia. Ideal para candidatos con antecedentes en MLOps y herramientas de inteligencia artificial. La empresa promueve un entorno colaboarativo y de innovación.
Full Stack Engineer
¿Es este el siguiente paso en su carrera? Descubra si es el candidato adecuado leyendo la descripción completa a continuación.
Fully Remote in Spain or Poland
We are working with a leading online scheduling platform designed to simplify the process of coordinating meetings and events. Founded over 18 years ago, it helps individuals and teams avoid the "back-and-forth" of email scheduling by allowing users to propose multiple time slots and let participants vote on their availability.
Architect Production AI Systems : Design reliable, production-ready AI systems, selecting optimal tools for robust real-world performance.
Curate Data & Feature Stores : Prepare high-quality datasets and maintain feature stores to ensure data consistency for training and inference.
Build Scalable ML Pipelines : Develop end-to-end data and ML pipelines using Airflow and dbt for seamless ingestion, deployment, and monitoring.
Design & Deploy Models : Prototype and train diverse neural architectures, including LLMs, with a focus on reproducibility and performance.
Implement Advanced Retrieval (RAG) : Design Graph RAG and hybrid retrieval systems, including graph construction and entity linking.
Enable Edge Intelligence : Optimize and quantize large models for efficient on-device and edge processing.
Experience delivering complete AI components—from planning and modeling to deployment, monitoring, and iteration.
Strong Python skills and deep familiarity with ML frameworks such as Scikit-Learn, TensorFlow, PyTorch, and Hugging Face. You’re comfortable designing, evaluating, and prototyping diverse model types.
Hands‑on experience with MLOps tools (e.g., MLflow, ZenML), dbt modeling, and working with cloud data warehouses or data lakes.
Experience building and scheduling pipelines in Airflow. Familiarity with modern data stacks such as Kafka, Spark, and cloud warehouses (BigQuery, Redshift, Snowflake). Ability to define event-level tracking schemas for reliable analytics.
Strong understanding of model behavior and evaluation. Experience developing frameworks for assessing model quality, reliability, hallucination detection, prompt regression, safety scoring, or multi-hop reasoning. Familiarity with RAG, graph-based retrieval, and prompt design. xcskxlj
A focus on shipping systems that are robust, explainable, and usable by others.