Manulife
Société Financière Manuvie
Desjardins Group
Desjardins Group
Desjardins Group
Desjardins Group
Desjardins Group
TD
Connect with headhunters to apply for similar jobsRBC
iA Financial Group
Portage Mutual Careers Centre
iA Financial Group
iA Financial Group
RBC
iA Financial Group
Desjardins Group
Desjardins Group
Desjardins Group
Desjardins Group
iA Financial Group
A leading financial services provider in Toronto is seeking an experienced Data Scientist to join their AI Group Functions team. This role focuses on translating actuarial challenges into actionable AI solutions, using advanced analytics and machine learning. The ideal candidate has 6–10 years of experience and expertise in Python, SQL, and modern data science tools. This hybrid position offers a salary range of CAD 129,400 to CAD 179,400 and various employee benefits.
Manulife’s Group Functions AI team is scaling AI and advanced analytics capabilities for Actuarial partners to improve how decisions are made and how insights are generated! This role sits within the AI team and focuses on building solutions that use machine learning, optimization, and modern analytical approaches to solve actuarial-adjacent problems at enterprise scale.
In this role, you will take actuarial problems and translate them into AI use cases. These include predictive risk and behavior modeling, grouping, outlier identification, scenario and sensitivity engines, and automation of controls and analytical routines across recurring cycles. The emphasis is on building reusable, production-ready components and analytical products that integrate into business workflows, with clear explainability, strong evaluation, ongoing monitoring, and governance-ready evidence!
You will work closely with actuarial collaborators and engineering partners. Together, you will deliver solutions that are explainable, robust, and operationally balanced. These solutions help accelerate decision cycles, improve consistency, and let teams focus on higher-value judgment where it matters.
Translate actuarial business problems into a clear solution approach: business workflow, data flow, modeling approach, evaluation plan, and operational controls.
Apply strong design thinking: clarify user needs, define decision points, design for adoption, and make trade-offs explicit.
Create lightweight, high-quality design artifacts (e.g., system context, runtime sequence, agent/tool map where applicable, data lineage, decision log) that make build and governance straightforward.
Make smart design trade-offs: accuracy vs explainability, robustness vs speed, and model complexity vs operational sustainability.
Develop models such as predictive risk and behavior models, forecasting and scenario models, segmentation, anomaly detection, and optimization approaches.
Build GenAI capabilities such as retrieval-based solutions, structured summarization/extraction, and guided analytical workflows to accelerate insight generation.
Where applicable, design agentic workflows that coordinate multiple steps and tools (e.g., retrieval, calculations, rules, and structured outputs) while maintaining traceability and controls.
Engineer features from large structured and unstructured datasets and ensure solutions remain stable as data and assumptions evolve.
Define performance expectations with collaborators and implement out-of-time testing, backtesting, error analysis, stability checks, and sensitivity analysis.
For GenAI and agentic workflows, design practical evaluation: scenario coverage, edge cases, human review rubrics, quality scoring, and regression testing.
Document model limitations clearly and build guardrails that ensure outputs are used appropriately.
Collaborate with data engineering, ML engineering, and software teams to productionize: pipelines, model packaging, CI/CD, deployment, and monitoring.
Implement monitoring for data quality, drift, performance deterioration, and operational failures; define remediation actions when thresholds breach.
Contribute to runbooks and support adoption and UAT with business users.
Produce documentation and evidence required for model risk review, including assumptions, validation results, monitoring plans, and UAT evidence.
Ensure privacy and security expectations are met through data minimization, appropriate access controls, and safe handling of sensitive information.
Mentor junior scientists through design reviews, code reviews, and evaluation practices.
Help standardize how we build solutions using reusable templates, checklists, and examples to improve consistency and delivery speed.
6–10 years of experience in applied data science, machine learning, or advanced analytics, with demonstrated end-to-end delivery into production beyond notebooks, including support for UAT and post-launch iteration.
Strong Python and SQL, with solid software engineering practices: Git-based workflows, code reviews, unit and integration testing, logging, readable code structure, and basic performance tuning.
Hands-on experience with modern DS/ML tooling such as scikit-learn, PyTorch or TensorFlow, and distributed processing platforms such as Spark or Databricks, including feature engineering and model development at scale.
Demonstrated ability to build and communicate solution architecture by producing clear diagrams and short specs. These cover data flow, runtime flow, interfaces, dependencies, failure modes, and operational controls. Align collaborators on trade-offs and scope.
Strong evaluation skills across ML and advanced analytics: backtesting or out-of-time testing, metric selection, error analysis, stability testing, and sensitivity analysis; ability to translate evaluation into business-ready acceptance criteria.
Experience building and operating monitored solutions: data quality checks, drift detection, performance deterioration monitoring, alerting, and practical remediation approaches.
Strong communication and collaborator management: ability to explain outputs, limitations, uncertainty, and build decisions in plain language, and drive adoption in business workflows with domain partners.
Actuarial domain depth demonstrated through significant experience partnering with actuarial teams or solving actuarial-context problems, with comfort in working with actuarial constraints, reconciliation expectations, and governed decision processes.
Working knowledge of GenAI and agentic patterns includes understanding when they add customer value. You should also know how to deploy them responsibly. Experience contributing to a GenAI-enabled capability like retrieval-based solutions, structured summarization/extraction, or tool-using workflows is required.
Actuarial background through education, credentials including ASA or FSA or progress toward them, or substantial experience working in actuarial teams and workflows.
Experience delivering solutions in governed environments, including documentation, validation evidence, monitoring plans, UAT support, and approvals.
Experience with GenAI patterns such as retrieval-based solutions, structured outputs, tool/function calling, and agentic workflows, along with practical evaluation methods.
Familiarity with vector search and embeddings, semantic retrieval, and orchestration frameworks used to build production GenAI systems.
Experience implementing GenAI guardrails including accuracy controls, safe output formatting, data minimization, access controls, and human review workflows.
Ability to influence and mentor others through design reviews, code reviews, and evaluation practices without formal people management responsibility.
We’ll empower you to learn and grow the career you want.
We’ll recognize and support you in a flexible environment where well-being and inclusion are more than just words.
As part of our global team, we’ll support you in shaping the future you want to see.
#LI-Hybrid
Manulife Financial Corporation es un importante proveedor internacional de servicios financieros que ayuda a las personas a tomar decisiones de una manera más fácil y a vivir mejor. Para obtener más información acerca de nosotros, visite http://www.manulife.com .
En Manulife/John Hancock, valoramos nuestra diversidad. Nos esforzamos por atraer, formar y retener una fuerza laboral tan diversa como los clientes a los que prestamos servicios, y para fomentar un entorno laboral inclusivo en el que se aprovechen las fortalezas de las culturas y las personas. Estamos comprometidos con la equidad en las contrataciones, la retención de talento, el ascenso y la remuneración, y administramos todas nuestras prácticas y programas sin discriminación por motivos de raza, ascendencia, lugar de origen, color, origen étnico, ciudadanía, religión o creencias religiosas, credo, sexo (incluyendo el embarazo y las afecciones relacionadas con este), orientación sexual, características genéticas, condición de veterano, identidad de género, expresión de género, edad, estado civil, estatus familiar, discapacidad, o cualquier otro aspecto protegido por la ley vigente.
Nuestra prioridad es eliminar las barreras para garantizar la igualdad de acceso al empleo. Un representante de Recursos Humanos trabajará con los solicitantes que requieran una adaptación razonable durante el proceso de solicitud. Toda la información que se haya compartido durante el proceso de solicitud de adaptación se almacenará y utilizará de manera congruente con las leyes y las políticas de Manulife/John Hancock correspondientes. Para solicitar una adaptación razonable en el proceso de solicitud, envíenos un mensaje a recruitment@manulife.com .
Toronto, Ontario
Híbrido
$129,400.00 CAD - $179,400.00 CAD
Si se está postulando para este puesto fuera de la ubicación principal, póngase en contacto con recruitment@manulife.com para conocer el rango salarial de su ubicación. El salario real variará según las condiciones locales del mercado, la geografía y los factores relacionados con el trabajo pertinentes, como conocimiento, habilidades, calificaciones, experiencia y educación/capacitación. Los empleados también tienen la oportunidad de participar en programas de incentivos y obtener una compensación de incentivos vinculada al desempeño comercial e individual.
Manulife ofrece a los empleados aptos una amplia variedad de beneficios personalizables, entre ellos, beneficios de salud, odontológicos, de salud mental, oftalmológicos, por discapacidad a corto y a largo plazo, cobertura de seguro de vida y por muerte accidental y desmembramiento, adopción/subrogación y bienestar, y planes de asistencia al empleado/familiar. También ofrecemos a los empleados admisibles varios planes de ahorro para la jubilación (incluidos planes de pensiones y un plan mundial de propiedad de acciones con contribuciones equivalentes del empleador) y recursos de asesoramiento y educación financiera. Nuestro generoso programa de tiempo libre remunerado en Canadá incluye feriados, vacaciones, días personales y días por enfermedad, y ofrecemos la gama completa de ausencia laboral reglamentaria. Si se está postulando para este puesto en los EE. UU., póngase en contacto con recruitment@manulife.com para obtener más información sobre las disposiciones relativas al tiempo libre remunerado específicas de EE. UU.
* The salary benchmark is based on the target salaries of market leaders in their relevant sectors. It is intended to serve as a guide to help Premium Members assess open positions and to help in salary negotiations. The salary benchmark is not provided directly by the company, which could be significantly higher or lower.