Job Search and Career Advice Platform

¡Activa las notificaciones laborales por email!

Sr Machine Learning Engineer

Pacifica Continental

Xico

Presencial

MXN 600,000 - 800,000

Jornada completa

Ayer
Sé de los primeros/as/es en solicitar esta vacante

Genera un currículum adaptado en cuestión de minutos

Consigue la entrevista y gana más. Más información

Descripción de la vacante

Una empresa de tecnología financiera busca un Ingeniero de Machine Learning para desarrollar y mantener la infraestructura central de sus aplicaciones de ciencia de datos. Esta posición involucra colaborar con equipos internacionales y optimizar el rendimiento de modelos que manejan 300 millones de transacciones al mes. Se requiere un título en informática y más de 3 años de experiencia en roles relacionados, con competencias en Python, tecnologías ML, y servicios en la nube, preferentemente AWS. La habilidad de trabajar en un ambiente ágil también es esencial.

Formación

  • 3+ años de experiencia como ingeniero de machine learning o rol relacionado con registro de código de producción.
  • Conocimiento integral del ciclo de vida de ML y habilidades en la generación de características.
  • Experiencia en implementación y uso de feature stores.

Responsabilidades

  • Colaborar con equipos globales para entregar productos de ciencia de datos de clase mundial.
  • Poseer el ciclo de vida de la infraestructura que potencia nuestros modelos de ML.
  • Construir nuevas herramientas que permitan a los equipos de modelado extraer datos y desplegar modelos.

Conocimientos

Python
Scikit-Learn
Pandas
Flask
FastAPI
Ingeniería de datos
Comunicación en inglés

Educación

Licenciatura en Informática, Ingeniería o campo relacionado

Herramientas

AWS
Databricks
Chalk.ai
Tecton
Feast
Descripción del empleo

Descripción del trabajo

SR Machine Learning Engineer As a Machine Learning Engineer, you will play a critical role in developing and maintaining the core systems and infrastructure that power our data science applications. This position is platform/tooling focused. You will work closely with other engineers, data scientists, risk/fraud analysts and product managers to build, maintain and improve the whole ML platform where our models and other DS products run. You will also develop tools that help our modeling team to create features, train, retrain, deploy, serve and monitor ML models. In this role, you will own the process of creating and maintaining scalable tools and infrastructure that handle hundreds of millions of transactions per month, ensuring high performance and reliability with a focus on data as a principle. Your work will be instrumental to enhance the impact of the team as it will be a central point of serving both internal and external services. You will be part of a data science team on a mission to improve access to credit and technology in emerging markets with the opportunity of creating a big and real positive impact to our millions of users across the countries we operate in.

Responsibilities
  • Collaborate with global teams including Risk, Fraud, Engineering and Product to deliver world-class data science products to international markets, including ML models, infrastructure and tools.
  • Own the life cycle (design, development, deployment, delivery and monitoring) of the infrastructure that powers our ML models that serve 300 million transactions per month and ensure they have optimal performance.
  • Drive the enablement of our modeling team by building new tools or adopting new technologies that will allow them to extract data, generate features and deploy/serve models with ease.
  • Work with a data-driven mindset and understand the critical importance of handling data properly and safely.
  • Organize frameworks and develop processes in our codebase so that the easy and default coding style is cleanly structured.
  • Mentor other engineers and data scientists about best practices in engineering.
Requirements
  • Bachelor's degree in Computer Science, Engineering, or a related field.
  • 3+ years of experience as a machine learning engineer, data engineer or a closely related position with a proven track record of writing production-level code and developing and maintaining ML infrastructure.
  • Good verbal and written communication skills in English.
  • Comprehensive knowledge of ML life cycle: from data extraction and feature engineering to model serving and monitoring for live and batch processing.
  • High proficiency in Python and a strong understanding of its related libraries and frameworks (e.g., Scikit-Learn, Pandas, Flask, FastAPI, etc).
  • Strong background in feature store implementation and usage (Chalk.ai, Tecton, Databricks, Feast, etc.), particularly focused on managing large volumes of data for online and offline processing.
  • Demonstrated experience with cloud providers (AWS preferred) and related data services (e.g., databases, storage, serverless computing).
  • Ability to work in a fast paced environment with constant requirement changes.
Consigue la evaluación confidencial y gratuita de tu currículum.
o arrastra un archivo en formato PDF, DOC, DOCX, ODT o PAGES de hasta 5 MB.