
Activez les alertes d’offres d’emploi par e-mail !
Générez un CV personnalisé en quelques minutes
Décrochez un entretien et gagnez plus. En savoir plus
Une école d'ingénieurs recherche un expert pour le projet FUTURE, qui vise à développer un cadre décisionnel pour les systèmes cyber-physiques. Vous serez chargé de la modélisation de l'incertitude et de l'intégration de l'intelligence artificielle. Ce rôle nécessitera des compétences en Python et des connaissances dans les théories de fusion de données. Le projet a un impact significatif sur la résilience des systèmes dans des environnements critiques.
Entreprise :
CESI est une école d'ingénieurs qui fait de la promotion sociale par l'excellence un modèle de réussite. Rejoignez un environnement stimulant où l'esprit d'équipe, la diversité des projets et l'autonomie ne font qu'un. Découvrez une école qui a su développer un modèle unique et se donne les moyens au quotidien de relever les grands défis de l'époque. Nos 25 campus, 28 000 étudiants, 8000 entreprises partenaires et 106 000 alumni témoignent de l'impact de CESI au niveau national.
CESI accompagne ses étudiants en utilisant des méthodes innovantes de pédagogie active. L'établissement forme avec rigueur les futurs ingénieurs, techniciens et managers, dans les secteurs suivants : l'Industrie & l'Innovation, le BTP, l'Informatique et le Numérique et le Développement Durable. Parallèlement, CESI concrétise son engagement dans la Recherche à travers des activités menées au sein de son Laboratoire d'Innovation Numérique, CESI LINEACT.
Les partenariats établis avec 130 universités à travers le globe, attestent de l'engagement international de CESI. Ces liens privilégiés offrent aux élèves ingénieurs une mobilité sortante et entrante à l'échelle internationale, façonnée notamment par des stages obligatoires faisant partie intégrante de leur cursus.
FUTURE - Framework for Uncertainty-aware and Trustworthy Unified Reasoning in Enabled CPS
Cyber-Physical Systems (CPS) are increasingly deployed in safety-critical settings such as manufacturing, robotics, autonomous infrastructures, and intelligent buildings. Smart Building systems, in particular, rely on dense networks of heterogeneous sensors to monitor energy consumption, indoor environmental quality, and occupant comfort. These systems must operate under heterogeneous data sources, incomplete information, sensor unreliability, and unpredictable disturbances.
Traditionally, AI-based decision systems provide deterministic outputs, often without expressing confidence levels or handling conflicting evidence.
FUTURE project aims to develop an uncertainty-aware and trust-oriented decision-making framework combining uncertainty modelling, AI-based predictions, and Dempster-Shafer theory. By integrating belief-function reasoning with multi-source evidence fusion, FUTURE enhances the resilience of CPS decision pipelines.
A realistic CPS scenario specifically, a Smart Building environment will serve as the experimental validation context, leveraging sensor data to evaluate uncertainty, reliability, and evidence-based decision performance.
Artificial Intelligence, Belief Functions Theory, Cyber-Physical Systems, Smart building, Data Fusion, Heterogeneous Sources.
Artificial Intelligence, Trustworthy AI, Uncertainty Modelling, System Engineering, Information Fusion.
The work program of FUTURE is structured around eight major tasks, each corresponding to a key component of the proposed uncertainty-aware decision-making framework. These tasks form a coherent pipeline, from data importation to experimental validation, and are described below.
Data Importation – Identify a publicly accessible and representative dataset that reflects real-world smart‑building sensor deployments, enabling evaluation of uncertainty-aware learning, reliability assessment, and evidence fusion in realistic operating conditions. For the FUTURE project, the selected test dataset is the CU-BEMS Smart Building Energy and IAQ Data 1.
Data Cleaning, Normalisation, and Harmonisation – Preprocess raw data through noise filtering, unit conversion, timestamp alignment, and signal normalisation.
Uncertainty Modeling of Data – Estimate the data uncertainty of multi‑heterogeneous sources.
Source‑Aware Categorisation of Data – Organise processed data into meaningful categories.
Development of an Uncertainty-Aware AI Model – Implement and train an uncertain Neural Network or evidential deep learning model capable of producing both predictions and associated uncertainty estimates.
Transformation of Model Outputs into Belief Masses – Convert AI model outputs into class‑specific supports and residual ignorance caused by uncertainty.
Evidence Fusion – Combine belief masses using different composition strategies depending on the level of conflict detected.
Decision-Making under Uncertainty – Evaluate how uncertainty and conflicting evidence influence the robustness of the final decision.
https://www.kaggle.com/datasets/claytonmiller/cubems-smart-building-energy-and-iaq-data
A fully implemented Python prototype of FUTURE.
A validated CPS case study.
FUTURE strengthens resilience in CPS, reduces decision errors under uncertainty, and provides a reference framework for integrating uncertainty‑aware AI in industrial settings.
CESI LINEACT (UR 7527), Laboratory for Digital Innovation for Businesses and Learning to Support the Competitiveness of Territories, anticipates and accompanies the technological mutations of sectors and services related to industry and construction. The historical proximity of CESI with companies is a determining element for our research activities. It has led us to focus our efforts on applied research close to companies and in partnership with them. A human‑centered approach coupled with the use of technologies, as well as territorial networking and links with training, have enabled the construction of cross‑cutting research; it puts humans, their needs and their uses, at the center of its issues and addresses the technological angle through these contributions. Its research is organized according to two interdisciplinary scientific teams and several application areas: