
Aktiviere Job-Benachrichtigungen per E-Mail!
Erstelle in nur wenigen Minuten einen maßgeschneiderten Lebenslauf
Überzeuge Recruiter und verdiene mehr Geld. Mehr erfahren
Ein führendes Forschungsinstitut in Hessen sucht einen Masterstudenten (m/w/d) für eine Arbeit zur Analyse erotischer und pornografischer Bilder. Die Forschung konzentriert sich auf Machine Learning und Bildverarbeitung. Gesucht werden Kenntnisse in Python und der Bereitschaft, mit schwer erkennbaren Bildmaterialien zu arbeiten. Flexible Arbeitszeiten und Einblicke in akademische und industrielle Anwendungen werden geboten.
Hintergrund/Motivation:
Zur Erkennung von erotischem und pornografischen Bildmaterial werden häufig Modelle eingesetzt, welche menschliche Haut, Körperteile oder Szenen erkennen können. Mithilfe von entsprechenden Datensätzen [1] lassen sich Klassifizierungs- und Objekterkennungsmodelle trainieren. Es gibt allerdings auch Bilder, welche offensichtlicht erotisch oder pornografisch sind, welche aber durch herkömmliche Methoden nicht erkannt werden können. Dies trifft z.B. auf Personen in hautenger Latex- oder Lederbekleidung zu. Existierende Ansätze im Bereich des \"Human Parsing\" können personen und deren Kleidung bereits gut segmentieren. Außerdem existieren Datasets wie Fashionpedia [2], welche Segmentierungsmasken und Labels für Kleidungsstücke beinhalten.
Ziel:
Ziel dieser Masterarbeit ist es zu untersuchen, ob und in welchem Umfang Kleidungsstücke zur Erkennung von erotischem und pornografischem Bildmaterial genutzt werden können. Zunächst soll recherchiert werden, welche bereits existierenden Ansätze sich zur Bearbeitung der Fragestellung eignen. Lücken in bestehenden Datensätzen und Modellen sollen beschrieben und durch eigene Daten und Modelle geschlossen werden. Auf Basis der entwickelten Methoden soll anschließend evaluiert werden, (1) ob eine zuverlässige Erkennung erotischer Kleidung möglich ist und (2) ob sich erotische und pornografische Bilder anhand erkannter Kleidung von anderen Kategorien abgrenzen lassen. Hierbei sollen auf unterschiedliche Gegenklassen evaluiert werden, wie z.B. Alltags-, Sport oder Strandbilder.
Ergebnisse:
Als Teil dieser Masterarbeit sollen die folgenden Ergebnisse erzielt werden:
Fraunhofer-Institut für Sichere Informationstechnologie SIT
www.sit.fraunhofer.de
Kennziffer:82692Bewerbungsfrist:
Verwandte Arbeiten:
[1] Phan, D. D. et al., LSPD: A Large-Scale Pornographic Dataset for Detection and Classification — https://inass.org/wp-content/2021/09/2022022819.pdf
[2] Jia, M. et al., Fashionpedia: Ontology, Segmentation, and an Attribute Localization Dataset — https://arxiv.org/pdf/2004.12276
Wir wertschätzen und fördern die Vielfalt der Kompetenzen unserer Mitarbeitenden und begrüßen daher alle Bewerbungen – unabhängig von Alter, Geschlecht, Nationalität, ethnischer und sozialer Herkunft, Religion, Weltanschauung, Behinderung sowie sexueller Orientierung und Identität. Schwerbehinderte Menschen werden bei gleicher Eignung bevorzugt eingestellt. Unsere Aufgaben sind vielfältig und anpassbar – für Bewerber*innen mit Behinderung finden wir gemeinsam Lösungen, die ihre Fähigkeiten optimal fördern.
Mit ihrer Fokussierung auf zukunftsrelevante Schlüsseltechnologien sowie auf die Verwertung der Ergebnisse in Wirtschaft und Industrie spielt die Fraunhofer-Gesellschaft eine zentrale Rolle im Innovationsprozess. Als Wegweiser und Impulsgeber für innovative Entwicklungen und wissenschaftliche Exzellenz wirkt sie mit an der Gestaltung unserer Gesellschaft und unserer Zukunft.