Job Search and Career Advice Platform
  • Jobs
  • Headhunter
  • Kostenloser Lebenslauf-Check
  • Über uns
DE
8.493

Association-Jobs in Italien

Integrating SHAP/LIME and Knowledge Graph Reasoning to Explain Food and Menu Recommendations in[...]

Association française pour l'Intelligence Artificielle

Palaiseau
Vor Ort
EUR 40.000 - 60.000
Vor 19 Tagen
Ich möchte über neue Stellenangebote mit dem Stichwort „Association“ benachrichtigt werden.

Chargé e d’accueil et billetterie – CDI à Rennes

FEDELIMA

Rennes
Vor Ort
EUR 20.000 - 40.000
Vor 19 Tagen

Accompagnant Éducatif Petite Enfance AEPE (ex CAP) (H/F)

A PETIT PAS

Paris
Vor Ort
EUR 20.000 - 40.000
Vor 19 Tagen

Aide-soignant(e) / Auxiliaire de Vie Sociale (H/F)

CENTRE HOSPITALIER ERDRE ET LOIRE

Oudon
Vor Ort
EUR 20.000 - 40.000
Vor 19 Tagen

Chauffeur / Chauffeuse de poids lourd (H/F)

ASSOCIATION AUTONOME DE CAMIONNAGE GLOBE

Val-de-Reuil
Vor Ort
EUR 20.000 - 40.000
Vor 19 Tagen
discover more jobs illustrationEntdecke mehr Stellenangebote als bei herkömmlichen Stellenportalen. Jetzt mehr Stellenangebote entdecken

Accompagnateur socio-éducatif H/F

APEI OUEST 44

Saint-Nazaire
Vor Ort
EUR 20.000 - 40.000
Vor 19 Tagen

Chargé(e) de Mission Agriculture Numérique (COD)

Acta-les instituts techniques agricoles

Paris
Hybrid
EUR 60.000 - 80.000
Vor 19 Tagen

Agent / Agente des services hospitaliers

IME LES PRIMEVERES

Concarneau
Vor Ort
EUR 20.000 - 40.000
Vor 19 Tagen
HeadhuntersVernetze dich mit Headhuntern um dich auf ähnliche Jobs zu bewerben

Aide-soignant / Aide-soignante à domicile (H/F)

ASSOCIATION FLORENCE NIGHTINGALE

Sainte-Luce-sur-Loire
Vor Ort
EUR 20.000 - 40.000
Vor 19 Tagen

Employé polyvalent périscolaire (H/F)

ESPACE DE TRAVAIL ACCOMPAGNEMENT EMP

Beaufort-en-Anjou
Vor Ort
EUR 20.000 - 40.000
Vor 19 Tagen

Moniteur d'Atelier (H/F) CDI - Atelier entretien des locaux - Fleury Les Aubrais

Adapei45

Orléans
Vor Ort
EUR 20.000 - 40.000
Vor 19 Tagen

Éducateur spécialisé / Éducatrice spécialisée (H/F)

ASSOCIATION HOSPITALIERE SAINTE MARIE

Vénissieux
Vor Ort
EUR 20.000 - 40.000
Vor 19 Tagen

Enseignant en activités physiques adaptées H/F

Association Siel Bleu

Blain
Vor Ort
Vertraulich
Vor 19 Tagen

Attaché e à l’accueil des publics et à la billetterie

FEDELIMA

Rennes
Vor Ort
EUR 40.000 - 60.000
Vor 19 Tagen

Biostatisticien ou Biostatisticienne

Centre hospitalier de Chartres

Fontenay-sur-Eure
Hybrid
EUR 45.000 - 60.000
Vor 19 Tagen

Assistant de Direction - Organisation & Projets

OHS de Lorraine

Vandœuvre-lès-Nancy
Vor Ort
EUR 25.000 - 35.000
Vor 19 Tagen

Assistant de Direction (H/F) - EVA

OHS de Lorraine

Vandœuvre-lès-Nancy
Vor Ort
EUR 25.000 - 35.000
Vor 19 Tagen

Assistant de Direction en Alternance - H/F

Challenge Business School

Arrondissement de Tours
Vor Ort
EUR 20.000 - 40.000
Vor 19 Tagen

Conseiller / Conseillère en insertion professionnelle (H/F)

ASSOCIATION ENVERGURE

Cergy
Vor Ort
EUR 80.000 - 100.000
Vor 19 Tagen

Assistant administratif / Assistante administrative (H/F)

ASSOCIATION FAMILIALE DE L'ISERE POUR PE

Grenoble
Vor Ort
EUR 20.000 - 40.000
Vor 19 Tagen

PSYCHOLOGUE DU DEVELOPPEMENT H/F (H/F)

ASSOCIATION REGIONALE POUR L INTEGRATION

Marseille
Vor Ort
EUR 40.000 - 60.000
Vor 19 Tagen

AES (H/F)

ASSOCIATION AID'AISNE

Saint-Quentin
Vor Ort
EUR 40.000 - 60.000
Vor 19 Tagen

Animateur Mobilité Vélo – Formations & Ateliers

r|ess|ources - ELYCOOP

Vénissieux
Vor Ort
EUR 20.000 - 40.000
Vor 20 Tagen

Pédiatre / Neuropédiatre / Pédopsychiatre (0,4 ETP) H / F

Association Hovia

Paris
Vor Ort
EUR 80.000 - 100.000
Vor 20 Tagen

Pédiatre/Neuropédiatre/Pédopsychiatre — Diagnostic TSA précoce

Association Hovia

Paris
Vor Ort
EUR 80.000 - 100.000
Vor 20 Tagen

Top-Positionen:

Risorse Umane-JobsLaurea Giurisprudenza-JobsImpiegata Commerciale-JobsExecutive Chef-JobsFinanza-JobsStudio Legale-JobsOperation Manager-JobsSales Assistant-JobsAutocad-JobsGeneral Manager-Jobs

Top-Unternehmen:

Jobs bei IkeaJobs bei OvsJobs bei CalzedoniaJobs bei WebuildJobs bei Msc CrociereJobs bei Maison Du MondeJobs bei Reale MutuaJobs bei RinascenteJobs bei EatalyJobs bei Sisal

Top-Städte:

Jobs in RomaJobs in NapoliJobs in BolognaJobs in GenovaJobs in PalermoJobs in VeneziaJobs in ModenaJobs in TriesteJobs in LivornoJobs in Varese
Integrating SHAP/LIME and Knowledge Graph Reasoning to Explain Food and Menu Recommendations in[...]
Association française pour l'Intelligence Artificielle
Palaiseau
Vor Ort
EUR 40.000 - 60.000
Vollzeit
Vor 19 Tagen

Zusammenfassung

A leading research organization in Palaiseau is looking for an intern to work on integrating SHAP/LIME with knowledge graph reasoning for food recommendations. The intern will conduct a literature review, implement methods for system explainability, and develop a recommender system using data science techniques. A solid background in machine learning and Python is required. This internship includes a monthly allowance of approximately €650, starting March 1, 2026.

Qualifikationen

  • Familiarity with SHAP and LIME techniques.
  • Ability to conduct literature reviews on recommender systems.
  • Skills in implementing and evaluating recommendation systems.

Aufgaben

  • Conduct a literature review on explainability for recommender systems.
  • Familiarize themselves with the current architecture of the recommender system.
  • Implement an explainability method based on research techniques.

Kenntnisse

Solid background in machine learning
Good understanding of knowledge representation and knowledge graphs
Experience with Python and common data science libraries
Basic knowledge of evaluation metrics for recommender systems
Jobbeschreibung
Integrating SHAP/LIME and Knowledge Graph Reasoning to Explain Food and Menu Recommendations in EXERSYS

EXERSYS

An EXplainableRecommandERSYSt for the Nutrition Domain.

Combining Knowledge Graphs, Ontologies and Machine Learning.

Most chronic diseases are correlated to unhealthy eating habits [1]. Public health agencies have created dietary guidelines targeting the general population to push people for healthier eating habits: “eat at least 5 fruits or vegetables per day”, “limit your consumption of salt”. The compliance of these guidelines is relatively low, although the awareness about an healthy diets is rather good [2]. There are different causes that contribute to this: cultural and personal preferences, difficulty of implementation, availability and price of food items [3] and so on.

In the EXERSYS project we are developing a recommender system of food items that can deal with most of these causes. Recommender systems [4] are (web, mobile, standalone) tools that have become increasingly popular for supporting the user in finding personalized suggestions of products, services and information. They have been very successful in a variety of domains (e.g., movies, shopping, social networks) and deployed in many applications. Recommender systems (refer to [5] for a survey) are based on the general idea of “suggesting similar items for similar users” and often exploit personal user preferences, past behavior and similarity between users.

In food related recommender systems, the recommended objects can be recipes, food items or menus. A menu is a complex item composed of different dishes, users’ preferences for a dish can change in response to the other dishes consumed with it, users’ health situation (e.g diabetes, arterial tension, allergies) may add constraints on possible dishes/ingredients to consider in a menu. Hence, recommending menus requires checking if the plates are compatible and fitting the user preferences and her health constraints. Moreover, a food-related recommender may consider the sequential aspect of the eating consumption (what we accept to eat today may be related to what we have eaten yesterday), while recommending an item to buy on a website is a one-shot recommendation, recommending a food-related item one needs to consider at which frequency the item should/could be recommended and when it has been consumed by the user. A food-related recommendation must also consider the context of the consumption: user’s preferences for food-related items may also be dependent on user’s context that can be social (e.g., dinner with friends), geographical and seasonal (e.g., recommending menus with seasonal ingredients). Finally, when knowledge and/or data are available, other constraints may be interesting to include such as ecological and ethical aspects that may concern the origin of the ingredients, their environmental impact (e.g., use of phytosanitary products, deforestation) and if their production is ethics compatible.

Menus recommendation is a novel challenging topic; recent works [18],[19] have dealt with the problem of recommending a menu but they do not consider the complexity of the problem such as the context of the consumption or the past sequence of menus consumed. The recommender system developed in this project tackles these challenges by considering a hybrid approach that uses knowledge graphs as prior knowledge and contextual information for the recommender system [Noemie][Alexandre].

One of the reasons that limit the acceptability of a recommendation is the absence of explanations behind it. The main focus of this master internship is to develop methods to provide such an explication based on the knowledge graph used by the recommender system.

The student will:
  • Conduct a literature review on the state of the art in explainability for recommender systems, with a particular focus on knowledge-based recommender systems.
  • Familiarize themselves with the current architecture and model of the existing recommender system.
  • Implement an explainability method following the current research in machine learning (e.g., SHAP, LIME, etc.).
  • Investigate approaches to enhance or complement the system’s explainability through the integration of the Knowledge Graph (KG).
  • Implement and evaluate the newly designed recommender system using existing datasets (INCA) and knowledge graphs (NutriKG).
Required technical skills:
  • Solid background in machine learning.
  • Good understanding of knowledge representation and knowledge graphs (RDF, OWL, SPARQL).
  • Experience with Python and common data science libraries (e.g., scikit-learn, pandas, PyTorch, TensorFlow).
  • Basic knowledge of evaluation metrics for recommender systems (e.g., precision, recall, coverage, diversity).

Supervision team:

Cristina Manfredotti, AgroParisTech, UMR MIA Paris-Saclay 518

Fatiha Saïs, LISN, UMR CNRS 9015, Université Paris-Saclay

Stéphane Dervaux, INRAE, UMR MIA Paris-Saclay

Planned internship period: March 1, 2026 – August 31, 2026

Location: Palaiseau

Allowance: Approximately €650/month (expected to increase in 2026, final rate to be confirmed in November).

Bibliography:

[1] World health organization: diet, nutrition and the prevention of chronic diseases: report of a joint who/fao expert consultation, 2003.

[2] Smith Edge M. Ivens, B. J. Translating the dietary guidelines to promote behavior change: Perspectives from the food and nutrition science solutions joint task force. J AcadNutr Diet, 116(10):1697–1702, 2016

[3] Byrd-Bredbenner C. Webb, D. Overcoming consumer inertia to dietary guidance. Advances in Nutrition, 6(4):391–396, 2015

[4] Gediminas Adomavicius, Bamshad Mobasher, Francesco Ricci, and Alexander Tuzhilin. Context-aware recommender systems. AI Mag., 32(3):67–80, 2011.

[5] Francesco Ricci, Lior Rokach, and Bracha Shapira, editors. Recommender Systems Handbook. Springer, 2015

[6] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. Item-based collaborative filtering recommendation algorithms. In Vincent Y. Shen, Nobuo Saito, Michael R. Lyu, and Mary Ellen Zurko, editors, Proceedings of the Tenth International World Wide Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001, pages 285–295. ACM, 2001

[7] Paul Sheridan, Mikael Onsjo, Claudia Jeanneth Becerra, Sergio Jimenez, and George Duenas. An ontology-based recommender system with an application to the star trek television franchise. Future Internet, 11(9):182, 2019.

[8] Zehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30–37, 2009

[9] Linas Baltrunas, Bernd Ludwig, and Francesco Ricci. Matrix factorization techniques for context aware recommendation. In Bamshad Mobasher, Robin D. Burke, Dietmar Jannach, and Gediminas Adomavicius, editors, Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, October 23-27, 2011, pages 301–304. ACM, 2011.

[10] Julien Delporte, StephaneCanu, and AlexandrosKaratzoglou. Apprentissage et factorisation pour la recommandation. In Younes Bennani and Emmanuel Viennet, editors, Apprentissage Artificiel et Fouille de Données, AAFD 2012, Université Paris 13, Institut Galilée, Villetaneuse, France, 28-29 juin 2012, volume A-6 of RNTI, pages 1–26. Hermann-Editions, 2012

[11] Hong-Jian Xue, Xin-Yu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. Deep matrix factorization models for recommender systems. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI’17, page 3203–3209. AAAI Press, 2017

[12] Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, and Qing He. A survey on knowledge graph-based recommender systems, 2020.

[13] Nicola Guarino, Daniel Oberle, and Steffen Staab. What is an ontology? In Steffen Staab and Rudi Studer, editors, Handbook on Ontologies, International Handbooks on Information Systems, pages 1–17. Springer Berlin Heidelberg, 2009.6

[14] Andrea Scharnhorst and Richard P. Smiraglia. Chapter 1. the need for knowledge organization. Introduction to the book linking knowledge: Linked open data for knowledge organization. In Linking Knowledge, pages 1–23. Ergon – ein Verlag in der Nomos Verlagsgesellschaft, 2021

[15] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction to Description Logic. Cambridge University Press, 2017

[16] Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, and Qing He. A survey on knowledge graph-based recommender systems. CoRR,abs/2003.00911, 2020

[17] Zongfeng Zhang and Xu Chen. Explainable recommendation: A survey and new perspectives. CoRR, abs/1804.11192, 2018. 8

[18] Imam Cholissodin and Ratih Kartika Dewi. Optimization of healthy diet menu variation using pso-sa. Journal of Information Technology and Computer Science, 2(1):28–40, Jun. 2017

[19] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. Sequence-aware recommender systems. ACM Comput. Surv., 51(4):66:1–66:36, 2018

[20] Melanie Munch, Juliette Dibie, Pierre-Henri Wuillemin, and Cristina E. Manfredotti. Towards interactive causal relation discovery driven by an ontology. In Roman Bartak and Keith W. Brawner, editors, Proceedings of the Thirty-Second International Florida Artificial Intelligence Research Society Conference, Sarasota, Florida, USA, May 19-22 2019, pages 504–508. AAAI Press, 2019

[21] Joe Raad, Nathalie Pernelle, and Fatiha Saıs. Detection of contextual identity links in a knowledge base. In ́Oscar Corcho, Krzysztof Janowicz, Giuseppe Rizzo, Ilaria Tiddi, and Daniel Garijo, editors, Proceedings of the Knowledge Capture Conference, K-CAP 2017, Austin, TX, USA, December 4-6, 2017, pages 8:1–8:8. ACM, 2017.

[22] Alina Petrova, Egor V. Kostylev, Bernardo Cuenca Grau, and Ian Horrocks. Query-based entity comparison in knowledge graphs revisited. In Chiara Ghidini, Olaf Hatig, Maria Maleshkova, Vojtech Svatek, Isabel Cruz, Aidan Hogan, Jie Song, Maxime Lefrancois, and Fabien Gandon, editors, The Semantic Web – ISWC 2019, pages 558–575, Cham, 2019. Springer International Publishing.

[23] Noémie Jacquet, Vincent Guigue, Cristina E. Manfredotti, Fatiha Saïs, Stéphane Dervaux, Paolo Viappiani:Modélisation du caractère séquentiel des repas pour améliorer la performance d’un système de recommandation alimentaire. EGC 2024: 131-142.

[24] Alexandre Combeau, Fatiha Saïs, Naggeta Kumari, Stéphane Dervaux, Cristina E. Manfredotti, Vincent Guigue, Paolo Viappiani:NutriKG – un graphe de connaissances pour modéliser les préférences et les besoins nutritionnels. IC 2025: 8-17

  • 1
  • ...
  • 268
  • 269
  • 270
  • ...
  • 340

* Der Gehaltsbenchmark wird auf Basis der Zielgehälter bei führenden Unternehmen in der jeweiligen Branche ermittelt und dient Premium-Nutzer:innen als Richtlinie zur Bewertung offener Positionen und als Orientierungshilfe bei Gehaltsverhandlungen. Der Gehaltsbenchmark wird nicht direkt vom Unternehmen angegeben. Er kann deutlich über bzw. unter diesem Wert liegen.

Job Search and Career Advice Platform

Wir geben Bewerber:innenRückenwind

Tools
  • Jobs
  • Lebenslauf-Check
  • Headhunter
  • Jobs durchsuchen
Unternehmen
  • Über JobLeads
  • Karriere bei JobLeads
  • Impressum
  • Presse
  • Bewertungen
Support
  • Hilfe
  • Partnerintegration
  • ATS-Partner
Social
  • JobLeads-Blog
  • YouTube
  • LinkedIn
  • Instagram
  • Facebook
  • Datenschutzrichtlinie
  • AGB

© JobLeads 2007 - 2025 | Alle Rechte vorbehalten