Aktiviere Job-Benachrichtigungen per E-Mail!

PhD Student – Bioinformatics/ Computational Biology (m/f/d)

Universitätsklinikum Heidelberg

Heidelberg

Vor Ort

EUR 45.000 - 60.000

Vollzeit

Vor 7 Tagen
Sei unter den ersten Bewerbenden

Zusammenfassung

Eine führende medizinische Einrichtung in Heidelberg sucht einen Doktoranden in Bioinformatik/Computational Biology. Die Position konzentriert sich auf die Analyse von Daten zu leukämischen Zellen und deren Dormanzverhalten. Der ideale Kandidat hat einen MSc in einem verwandten Bereich und fundierte Programmierkenntnisse. Das teamorientierte Umfeld bietet hervorragende Möglichkeiten zur Forschung und Zusammenarbeit an innovativen Projekten.

Qualifikationen

  • Abgeschlossenes MSc in Bioinformatik oder verwandten Bereichen.
  • Starke Programmierkenntnisse in R und/oder Python.
  • Erfahrung in der Analyse von Einzelzellen oder Multi-Omik-Daten.

Aufgaben

  • Analysieren von Bulk- und Einzelzell-Multi-Omik-Daten.
  • Kuratiere und integriere öffentliche Datensätze zur AML-Dormanz.
  • Entwickeln und Anwenden von integrativen Datenanalyse-Pipelines.

Kenntnisse

Programmieren in R oder Python
Analyse von Einzelzell- oder Multi-Omik-Daten
Interesse an Krebsbiologie

Ausbildung

MSc in Bioinformatik, Computational Biology oder verwandten Bereichen

Tools

MOFA
Scriabin
LIANA+
COSMOS

Jobbeschreibung

starting on October 1st at the Institute for Computational Biomedicine.

Join our exciting mission to decode leukemic dormancy and plasticity in AML!

The research group of Dr. Junyan Lu at the Medical Faculty of Heidelberg University, in collaboration with Prof. Dr. Irmela Jeremias, invites applications for a PhD student in Bioinformatics / Computational Biology as part of the CRC1709-funded project “Plastic growth behaviour of patients’ AML in vivo: Releasing dormant cells from their protective niche.” We are an interdisciplinary and collaborative research team at the forefront of multi-omics data integration, cancer systems biology, and single-cell analysis, with strong links to clinical and translational oncology. Our work is based in the dynamic research environment of Heidelberg University, one of Europe’s leading biomedical institutions. This position focuses on unraveling the regulatory networks underlying dormancy and therapy resistance in acute myeloid leukemia (AML). Using advanced computational tools and single-cell multi-omics data (CITE-seq, proteomics, transcriptomics, methylation, metabolomics), we aim to: 1) Identify surface molecules specific to dormant leukemic stem cells; 2) Model AML plasticity at the single-cell level; 3) Propose candidate therapeutic targets for in vivo validation. The PhD student will be embedded in a collaborative and supportive team, working closely with a wet-lab PhD student from the team of Prof. Dr. Jeremias.



Your tasks
  • Analyze bulk and single-cell multi-omics data generated from in vivo AML models
  • Curate and integrate public datasets (e.g. scRNA-seq) to derive prior knowledge on AML dormancy
  • Develop and apply integrative data analysis pipelines (e.g. MOFA, Scriabin, LIANA+, COSMOS) for mining and interpreting multi-omic datasets
  • Perform ligand-receptor and network-based modeling of cell-cell interactions
  • Communicate findings through presentations, publications, and consortium meetings


Your profile
  • MSc in Bioinformatics, Computational Biology, Systems Biology, or a related field
  • Strong programming skills in R and/or Python
  • Experience with single-cell or multi-omics data analysis
  • Interest in cancer biology, particularly leukemia, and therapy resistance mechanisms
  • Ability to work independently and collaboratively within interdisciplinary teams
  • Prior experience with network modeling or machine learning is a plus


About us

For further information please contact Dr. Junyan Lu via e-mail.

Interested?

Applications will be accepted until 20.08.2025 via online.



Hol dir deinen kostenlosen, vertraulichen Lebenslauf-Check.
eine PDF-, DOC-, DOCX-, ODT- oder PAGES-Datei bis zu 5 MB per Drag & Drop ablegen.