Aktiviere Job-Benachrichtigungen per E-Mail!

Ph.D. position in Machine Learning for Molecular Simulations (100% E13)

Technische Universität München (Technical University of Munich)

München

Vor Ort

EUR 80.000 - 100.000

Vollzeit

Vor 17 Tagen

Erhöhe deine Chancen auf ein Interview

Erstelle einen auf die Position zugeschnittenen Lebenslauf, um deine Erfolgsquote zu erhöhen.

Zusammenfassung

The Multiscale Modeling of Fluid Materials group at a leading European university seeks talented scientists for molecular dynamics simulations. As a part of this ambitious research, candidates will develop neural network potentials, applying innovative techniques across various scientific fields. The position offers a competitive salary and the opportunity to work with a young and dynamic team.

Leistungen

Funding for scientific equipment
Conference travel expenses

Qualifikationen

  • Candidates must hold an M.Sc. or be about to complete it.
  • Strong machine learning background and proficiency in Python required.
  • Experience with molecular simulations is beneficial.

Aufgaben

  • Conduct molecular dynamics simulations using neural network potentials.
  • Develop next-generation neural network models for interdisciplinary research.

Kenntnisse

Machine Learning
Python
Molecular Simulations
Statistical Physics

Ausbildung

M.Sc. in Informatics, Physics, Chemistry, or Engineering

Jobbeschreibung

28.05.2025, Wissenschaftliches Personal

The Multiscale Modeling of Fluid Materials group at the Technical University of Munich is looking for talented and ambitious scientists interested in unique interdisciplinary research, integrating molecular simulations, machine learning, statistical physics, multiscale modeling, and uncertainty quantification. The successful applicant will work on molecular dynamics simulations, where molecular interactions are predicted by neural network potentials. These state-of-the-art neural network models promise simulations at unprecedented accuracy, giving quantitative insight into physical processes at the nanoscale. The candidate will develop the next generation of neural network potentials and apply them to problems from different scientific fields, ranging from life sciences to engineering. For more information, visit our webpage www.epc.ed.tum.de/en/mfm.

Your profile

  • M.Sc. degree in informatics, physics, chemistry, or engineering (candidates who will soon obtain the degree are also welcome to apply)
  • strong background in machine learning
  • proficiency in Python programming
  • experience with molecular simulations and knowledge of statistical physics is beneficial
  • fluent in spoken and written English (knowledge of German is beneficial but not required)

Our offer

You will join a young research group working on state-of-the-art research in molecular modeling and be-come part of TUM, a top European university. The position is available immediately and for a duration of three years (possible extension). Salary is based on the Free State of Bavaria public service wage agree-ment (100%, TV-L E13). Additional funding is available for scientific equipment and conference travel ex-penses.

How to apply?

Please send your application in English by email to info.mmfm@mw.tum.de with the subject “PhD Applica-tion”. The application should include (one PDF document) a cover letter (motivation to join our group, how your previous work/knowledge/interest relates to our research topics and publications), a CV, a grades transcript, two references' contact information, and a desired starting date. Provide evidence of your pro-gramming skills (e.g., GitHub repository) if possible. Applications will be reviewed on a rolling basis until the position is filled. Preference will be given to applications received before the 15th of July 2025.

For any questions, please do not hesitate to contact Prof. Dr. Julija Zavadlav (info.mmfm@mw.tum.de).

Die Stelle ist für die Besetzung mit schwerbehinderten Menschen geeignet. Schwerbehinderte Bewerberinnen und Bewerber werden bei ansonsten im wesentlichen gleicher Eignung, Befähigung und fachlicher Leistung bevorzugt eingestellt.

Hinweis Zum Datenschutz

Im Rahmen Ihrer Bewerbung um eine Stelle an der Technischen Universität München (TUM) übermitteln Sie personenbezogene Daten. Beachten Sie bitte hierzu unsere Datenschutzhinweise gemäß Art. 13 Datenschutz-Grundverordnung (DSGVO) zur Erhebung und Verarbeitung von personenbezogenen Daten im Rahmen Ihrer Bewerbung. Durch die Übermittlung Ihrer Bewerbung bestätigen Sie, dass Sie die Datenschutzhinweise der TUM zur Kenntnis genommen haben.

Kontakt: Prof. Dr. Julija Zavadlav info.mmfm@mw.tum.de

Mehr Information

http://www.epc.ed.tum.de/en/mfm
Hol dir deinen kostenlosen, vertraulichen Lebenslauf-Check.
eine PDF-, DOC-, DOCX-, ODT- oder PAGES-Datei bis zu 5 MB per Drag & Drop ablegen.