Aktiviere Job-Benachrichtigungen per E-Mail!

Students (m/f/d) for Master Thesis Machine Learning Methods in Numerical Weather Prediction

TN Germany

Stuttgart

Vor Ort

EUR 15.000 - 25.000

Vollzeit

Gestern
Sei unter den ersten Bewerbenden

Erhöhe deine Chancen auf ein Interview

Erstelle einen auf die Position zugeschnittenen Lebenslauf, um deine Erfolgsquote zu erhöhen.

Zusammenfassung

A leading research center in Stuttgart seeks students for a Master Thesis in Machine Learning Methods applied to Numerical Weather Prediction. The role involves researching advanced forecasting models and implementing prediction frameworks, offering a flexible and modern work environment.

Leistungen

Flexible hours
Modern facilities
Health programs

Qualifikationen

  • Candidates should have studies relevant to Deep Learning, Optimization, or Meteorology.
  • Experience with Linux systems is ideal.

Aufgaben

  • Research the GraphCast model for weather forecasting.
  • Implement a prediction framework and evaluate model performance.

Kenntnisse

Python
Deep Learning
Optimization
German

Ausbildung

Master Thesis

Tools

Linux

Jobbeschreibung

Social network you want to login/join with:

Students (m/f/d) for Master Thesis Machine Learning Methods in Numerical Weather Prediction, Stuttgart

col-narrow-left

Client:
Location:

Stuttgart, Germany

Job Category:

Other

-

EU work permit required:

Yes

col-narrow-right

Job Reference:

7813c5b3594c

Job Views:

2

Posted:

18.05.2025

Expiry Date:

02.07.2025

col-wide

Job Description:

The Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW) is seeking students (m/f/d) for a Master Thesis in Machine Learning Methods applied to Numerical Weather Prediction in Stuttgart. ZSW specializes in applied research on energy transition topics, including photovoltaics, wind energy, battery tech, fuel cells, electrolysis, e-fuels, circular economy, policy advice, and AI for process and system optimization. The position involves researching the GraphCast model, a graph neural network for weather forecasting, and implementing a forecast pipeline on ZSW's GPU architecture. Responsibilities include analyzing the model architecture, reviewing alternative data-driven weather forecasting methods, implementing a prediction framework, and evaluating model performance. Candidates should have studies relevant to Deep Learning, Optimization, or Meteorology, proficiency in Python and machine learning frameworks, and ideally experience with Linux systems and German language skills. We offer a research-oriented environment with flexible hours, modern facilities, and health programs. Interested applicants should apply via the online portal or contact Mr. Christian Bär for questions. More info at www.zsw-bw.de. We look forward to your application!

Hol dir deinen kostenlosen, vertraulichen Lebenslauf-Check.
eine PDF-, DOC-, DOCX-, ODT- oder PAGES-Datei bis zu 5 MB per Drag & Drop ablegen.