Aktiviere Job-Benachrichtigungen per E-Mail!
Erhöhe deine Chancen auf ein Interview
Erstelle einen auf die Position zugeschnittenen Lebenslauf, um deine Erfolgsquote zu erhöhen.
Ein innovatives Forschungsprojekt sucht engagierte Studierende für eine Abschlussarbeit im Bereich Windenergieanlagen. Sie werden die Möglichkeit haben, an der Entwicklung neuer Antriebssysteme zu arbeiten und die Effizienz von Windkraftanlagen zu steigern. In einem interdisziplinären Team werden Sie eng mit der Industrie zusammenarbeiten und wertvolle Erfahrungen in der Simulation und Modellierung sammeln. Diese Position bietet nicht nur eine spannende Herausforderung, sondern auch die Chance, aktiv zur Energiewende beizutragen und eine klimaneutrale Zukunft mitzugestalten.
Der Chair for Wind Power Drives erforscht das Verhalten von Antriebssystemen in modernen Multimegawatt-Windkraftanlagen. Forschungsziele sind die Steigerung der Verfügbarkeit, der Robustheit und der Energieeffizienz der Windenergieanlagen sowie die Senkung der Stromgestehungskosten. Hierzu werden Software-Entwicklungswerkzeuge und moderne Systemprüfstände im Verbund eingesetzt.
Im Rahmen des Großprojekts „JB4WT – Journal Bearings for Wind Turbines“ realisieren wir den zuverlässigen Einsatz von Gleitlagern in modernen und innovativen Getrieben von Windenergieanlagen. Die Lagerung der Planetenräder durch Gleitlager wird zum neuen Standard in der Windindustrie. Der Wechsel von Wälzlagern zu Gleitlagern birgt den Vorteil einer höheren Leistungsdichte, womit die Effizienz von Windenergie-anlagen weiter gesteigert werden kann. Die Etablierung der neuen Generation von Antriebssystemen in Windenergieanlagen wird durch die Industrie bereits stark vorangetrieben, birgt allerdings bislang die Herausforderung der Komponentenzuverlässigkeit. Diese Problematik greifen wir mit unserem Projekt „JB4WT“ auf und schaffen neue Lösungsansätze. Auf diese Weise wollen wir langfristig zur Energiewende beitragen.
Um die neue Generation der Windenergieanlagen zuverlässiger und auf diese Weise wirtschaftlicher zu machen, müssen die Ausfallmechanismen der Antriebsstrangkomponenten identifiziert und in Modellen abgebildet werden. In dieser Arbeit wollen wir den Verschleiß und das thermische Verhalten von Planetenradgleitlagern modellieren, um deren Ausfall prognostizieren zu können.
Aufgaben:
Voraussetzung:
Wir bieten:
Auf deine aussagekräftige Bewerbung per E-Mail freut sich:
Benjamin Lehmann, M. Sc.
Institut für Maschinenelemente und Systementwicklung
Schinkelstraße 10, 52062 Aachen
benjamin.lehmann@imse.rwth-aachen.de