Activez les alertes d’offres d’emploi par e-mail !

Job offer

European Commission

France

Sur place

EUR 30 000 - 45 000

Plein temps

Il y a 8 jours

Mulipliez les invitations à des entretiens

Créez un CV sur mesure et personnalisé en fonction du poste pour multiplier vos chances.

Résumé du poste

Le CNRS recherche un postdoctorant en dynamique de magnétisation ultrafaste pour mener des recherches sur des systèmes magnétiques. Ce poste impliquera l'utilisation de techniques avancées en matière d'optique et de laser, et offrira la possibilité d'évoluer au sein d'un groupe de recherche dynamique. Le candidat idéal possède un doctorat en physique et une forte autonomie dans son travail. Vous participerez à un projet de recherche innovant qui contribue à des avancées significatives dans le domaine.

Qualifications

  • Doctorant en Physique avec expérience en recherche sur les matériaux condensés.
  • Capacités avérées à travailler de manière autonome et enthousiaste.
  • Excellentes compétences en communication scientifique.

Responsabilités

  • Réaliser des expériences sur les systèmes magnétiques aux ultrafast.
  • Analyser les données des installations de grandes envergures.
  • Rédiger des articles scientifique et présenter les résultats lors de conférences.

Connaissances

Autonomie
Communication écrite et verbale
Expertise en magnétisme

Formation

Doctorat en Physique

Outils

Techniques de spectroscopie XUV/X-ray
Résultats d'expériences de lasers à électrons libres

Description du poste

Organisation/Company CNRS Department Laboratoire de Chimie Physique - Matière et Rayonnement Research Field Physics Researcher Profile Recognised Researcher (R2) Country France Application Deadline 4 Jul 2025 - 23:59 (UTC) Type of Contract Temporary Job Status Full-time Hours Per Week 35 Offer Starting Date 1 Oct 2025 Is the job funded through the EU Research Framework Programme? Not funded by a EU programme Is the Job related to staff position within a Research Infrastructure? No

Offer Description

Today's information society is increasingly dependent on the availability of faster communication in ever-smaller devices. To sustain technological progress, new fundamental ideas are needed. Towards that direction, the discovery of an optically induced ultrafast magnetization, more than a quarter of a century ago, has triggered a tremendous interest [1]. However, the optically induced transfer of angular momentum between different reservoirs, in a magnetic system, is still an open question puzzling researchers in the quest for a microscopic description of ultrafast spin dynamics [2]. In this context, ferromagnet-heavy metal (FM-HM) based thin films have been extensively used to study ultrafast magnetization dynamics due to the ease of tailoring their magnetic properties. These studies yielded a suite of interesting results, which gave rise to the development of several theories [3-6]. However, it is not clear if those different experimental results are due to intrinsic properties (e.g. magnetic anisotropy, sample stoichiometry), sample morphology (e.g. interface quality, crystallinity) or the different means of probing. Therefore a general understanding of the ultrafast magnetization dynamics in these important systems for spintronic applications has so far not emerged. In order to converge on a consensus about the microscopic mechanisms controlling ultra-fast dynamics, the overall goal of this position is to conduct a systematic study of magnetic systems composed of 3d transition metals (e.g. Co or Fe) and 4d/5d heavy metals (e.g. Pt or Pd) to understand the different magnetization dynamics observed in these systems. The goal of this postdoc position is to advance our understanding of ultrafast magnetization dynamics on three points: (i) determine the contribution and the importance of the different intrinsic microscopic mechanisms, (ii) distinguish how different experimental techniques can bring different types of information and (iii) assess the importance of the exact structure of the sample.

[1] Beaurepaire, et al, Ultrafast Spin Dynamics in Ferromagnetic Nickel. PRL 76, 4250, 1996
[2] Scheid, et al, Light-induced ultrafast magnetization dynamics in metallic compounds. JMMM 560, 169596 2022
[3]* Hennes, et al, Element-Selective Analysis of Ultrafast Demagnetization in Co/Pt Multilayers Exhibiting Large Perpendicular Magnetic Anisotropy. APL 120, 072408, 2022
[4] Willems, et al, Probing Ultrafast Spin Dynamics with High-Harmonic Magnetic Circular Dichroism Spectroscopy. PRB 92, 220405, 2015
[5] Yamamoto, et al, Element-Selectively Tracking Ultrafast Demagnetization Process in Co/Pt Multilayer Thin Films by the Resonant Magneto-Optical Kerr Effect. APL 116, 172406, 2020
[6] Vaskivskyi, et al, A. Element-Specific Magnetization Dynamics in Co–Pt Alloys Induced by Strong Optical Excitation. J. Phys. Chem. C 125, 11714, 2021

- samples growth by magnetron sputtering
- static and time-resolved magneto-optical Kerr effect experiment
- Experiment on synchrotron and free-electron laser or high-order harmonic generation sources
- analysis of data from large-scale facilities (synchrotron, free electron laser)
- physical interpretation of the results obtained in relation to the bibliography
- writing of articles and presentations at national and international conferences

Our research group (Strongly Correlated and Magnetic Materials) is part of the Laboratory of Physical Chemistry - Matter and Radiation (LCPMR), a joint research unit of the Sorbonne Université and the CNRS, which is located on the Pierre et Marie Curie campus in downtown Paris (5th arrondissement). The research groups of the LCPMR are known for their expertise in the application of advanced XUV/X-ray spectroscopies and scattering techniques for the investigation of electronic properties of matter, from atoms and molecules to condensed matter, and their dynamics.
For the past 15 years, our team at LCPMR has been at the forefront of the research on ultrafast magnetization dynamics using extreme ultraviolet (XUV) and X-ray femtosecond sources bringing nanometer scale and element selectivity to the field. This was done by developing advanced spectroscopic experiments at different state-of-the-art HHG and XFEL sources and brought numerous breakthrough results such as indirect ultrafast demagnetization [7], transient inhomogeneous magnetic depth profile [8,9] ultrafast dynamics of magnetic anisotropy [10] and interplay of charge and spin dynamics [11]. To realize our time-resolved experiments we have developed strong collaborations with the LOA (Laboratoire d'Optique Appliquée, Palaiseau, France) for all optical and HHG (High Harmonic Generation) experiments; the free electron lasers FLASH (Hambourg, Germany), FERMI (Trieste, Italy) and European XFEL (Schenefeld, Germany) for XUV/X-ray experiments. The postdoc will benefit from these established collaborations for the realization of his/her research project. He/she will be part of a team consisting of a CNRS research scientist, 1 assistant professor, 1 professor, 1 research engineer, 1 engineer and 3 PhD students.

[7]* Vodungbo, et al, Indirect Excitation of Ultrafast Demagnetization. Sci. Rep. 6, 18970, 2016
[8]* Jal, et al, Structural dynamics during laser-induced ultrafast demagnetization. PRB 95, 184422, 2017
[9]* Chardonnet, et al, Toward ultrafast magnetic depth profiling using time-resolved x-ray resonant magnetic reflectivity. Struct. Dyn. 8, 0340305, 2021
[10]* Hennes, et al, Laser-induced ultrafast demagnetization and perpendicular magnetic anisotropy reduction in a Co88Tb12 thin film with stripe domains. PRB 102, 174437, 2020
[11]* Hennes, et al, Time-Resolved XUV Absorption Spectroscopy and Magnetic Circular Dichroism at the Ni M2,3-Edges. Applied Science, 11, 325, 2021

- strong expertise in magnetism and/or time-resolved condensed matter experiments
- demonstrated track record of performing good research with autonomy and enthusiasm
- strong written and verbal communication skills.

Obtenez votre examen gratuit et confidentiel de votre CV.
ou faites glisser et déposez un fichier PDF, DOC, DOCX, ODT ou PAGES jusqu’à 5 Mo.