Activez les alertes d’offres d’emploi par e-mail !

Three-year PhD position in Artificial Intelligence for Clinical Anesthesia and Risk Evaluation [...]

European Commission

France

Sur place

EUR 40 000 - 60 000

Plein temps

Hier
Soyez parmi les premiers à postuler

Générez un CV personnalisé en quelques minutes

Décrochez un entretien et gagnez plus. En savoir plus

Repartez de zéro ou importez un CV existant

Résumé du poste

Le projet de doctorat AI-CARE cherche à concevoir un système d'aide à la décision clinique hybride pour l'anesthésie, alliant intelligence artificielle symbolique et apprentissage statistique. Le candidat participera au développement d'un pipeline IA tout en bénéficiant d'un environnement de recherche dynamique et de l'accès à de vastes ensembles de données cliniques.

Prestations

Accès à des jeux de données cliniques anonymisés
Double supervision par des experts
Environnement interdisciplinaire dynamique
Infrastructure informatique de pointe
Opportunité de valoriser le travail via des publications

Qualifications

  • Formation en ingénierie biomédicale, informatique ou domaines associés.
  • Familiarité avec les ontologies médicales est un plus.
  • Expérience préalable avec des données cliniques est un atout.

Responsabilités

  • Développement d'un système d'aide à la décision clinique pour l'anesthésie.
  • Extraction d'informations cliniques à partir de textes non structurés.
  • Modélisation décisionnelle et apprentissage adaptatif basé sur les résultats cliniques.

Connaissances

Compétences en traitement du langage naturel
Compétences en apprentissage automatique
Compétences en IA symbolique
Curiosité scientifique
Capacités analytiques
Compétences en communication

Formation

Master en ingénierie biomédicale ou domaines connexes

Description du poste

Organisation/Company Aix-Marseille Université Research Field Computer science » Informatics Computer science » Programming Computer science » Other Engineering » Biomedical engineering Medical sciences » Other Researcher Profile First Stage Researcher (R1) Country France Application Deadline 1 Oct 2025 - 07:00 (UTC) Type of Contract Temporary Job Status Full-time Hours Per Week 38 Is the job funded through the EU Research Framework Programme? Not funded by a EU programme Is the Job related to staff position within a Research Infrastructure? No

Offer Description

RESEARCHER PROFILE:PhD/ R1: First stage Researcher
RESEARCH FIELD(S)1:Computer Science
MAIN SUB RESEARCH FIELD OR DISCIPLINES1:Medical Science

JOB /OFFER DESCRIPTION

The AI-CARE PhD project aims to design a hybrid and interpretable clinical decision support system (CDSS) for anesthesia, combining symbolic artificial intelligence with statistical learning. In France, more than four million anesthetic procedures are performed yearly, each requiring a preoperative anesthesia consultation. During this critical step, anesthesiologists must synthesize a vast amount of heterogeneous data—most often unstructured and dispersed across electronic medical records—such as clinical notes, medication lists, comorbidities, lab values, and surgical risk factors.

The scientific challenges of this project are significant. First, extracting and structuring relevant clinical information from unstructured texts involves advanced natural language processing (NLP) tailored to medical content. This includes entity recognition (e.g., medications, diagnoses), relation extraction (e.g., comorbidity–treatment links), and concept normalization using terminologies such as CIM-10, ATC, and SNOMED-CT. Second, modeling anesthetic decision-making requires integrating heterogeneous data (structured and unstructured), capturing expert reasoning under uncertainty, and learning risk stratification patterns from large cohorts. Third, embedding formal medical knowledge (e.g., guidelines from SFAR or ESAIC) into a symbolic engine involves building a domain-specific ontology and translating best practices into machine-actionable rules. Lastly, the system must adapt to real-world outcomes via feedback loops, learning from perioperative events to refine its predictions over time.

Phase 1 focuses on the development of an AI pipeline that processes anesthesia consultation notes and produces structured, analyzable data. This will involve adapting pretrained biomedical language models (e.g., ClinicalBERT, CamemBERT médical, LLaMA-Med) to French clinical data and developing an anesthesia-specific ontology to support symbolic reasoning. Using a cohort of over 80,000 anonymized consultations, supervised models will then be trained to predict anesthetic risk (e.g., ASA class) and suggest context-aware management strategies.

Phase 2 will validate and refine these models using a second dataset of 35,000 perioperative records. The goal is to implement adaptive learning: comparing predicted strategies and actual clinical decisions, correlating them with real intraoperative events (hypotension, difficult intubation, adverse drug responses). This phase introduces a feedback loop, allowing the AI system to adjust its recommendations and confidence levels based on real outcomes—thus creating a self-improving, continuously learning CDSS.

This interdisciplinary PhD bridges clinical anesthesiology, data science, and symbolic reasoning. It contributes to the field of explainable and ethical AI in medicine. The thesis will be hosted at the Laboratoire de Biomécanique Appliquée (Faculté de Médecine de Marseille), in collaboration with the Hôpital National d’Instruction des Armées Sainte Anne (Toulon) and APHM - Hôpital de la Timone. It is part of the strategic program "Sciences numériques et IA pour la santé" led by the Institut Laënnec and supports the French roadmap for trusted medical AI.

TYPE OF CONTRACT:TEMPORARY
JOB STATUS:FULL TIME
HOURS PER WEEK35
APPLICATION DEADLINE:01/10/2025 09:00 am
ENVISAGED STARTING DATE:01/10/2025
ENVISAGED DURATION: 36 months
JOB NOT FUNDED THROUGH AN EU RESEARCH FRAMEWORK PROGRAMME

WHAT WE OFFER:

The PhD fellow will benefit from:

  • Access to a large-scale, anonymized clinical dataset
  • Dual supervision by experts in anesthesiology and artificial intelligence
  • A dynamic, interdisciplinary research environment (LBA-AMU)
  • State-of-the-art computing infrastructure
  • Opportunities to valorize the work through scientific publications and clinical applications (e.g., integration into hospital software)

Additional information: The Euraxess Center of Aix-Marseille Université informs foreign visiting professors, researchers, postdoc and PhD candidates about the administrative steps to be undertaken prior to arrival at AMU and the various practical formalities to be completed once in France: visas and entry requirements, insurance, help finding accommodation, support in opening a bank account, etc. More information onAMU EURAXESS Portal

QUALIFICATIONS, REQUIRED RESEARCH FIELDS, REQUIRED EDUCATION LEVEL, PROFESSIONAL SKILLS, OTHER RESEARCH REQUIREMENTS

  • Master’s degree (MSc or equivalent) in biomedical engineering, health informatics, computer science, applied mathematics, or a related field
  • Knowledge of medical terminology and clinical workflows is a strong asset
  • Skills in natural language processing, machine learning, or symbolic AI (or willingness to acquire them)
  • Familiarity with medical ontologies or interest in semantic technologies is welcome
  • Prior experience with clinical data or participation in health-related projects will be considered a plus
  • Scientific curiosity and critical thinking
  • Strong analytical and problem-solving abilities
  • Ability to work independently and in a multidisciplinary team
  • Good communication skills (written and oral)
  • Fluency in English; knowledge of French is a plus since the health data are in french
  • Adaptability, sense of responsibility, and rigor

REQUESTED DOCUMENTS OF APPLICATION, ELIGIBILITY CRITERIA, SELECTION PROCESS

  • CV
  • Master’s‐level academic transcript (with grades)
  • Reference letters (optional but appreciated)
Obtenez votre examen gratuit et confidentiel de votre CV.
ou faites glisser et déposez un fichier PDF, DOC, DOCX, ODT ou PAGES jusqu’à 5 Mo.