Activez les alertes d’offres d’emploi par e-mail !
Mulipliez les invitations à des entretiens
Un poste de chercheur R1 est disponible pour le développement de modèles prédictifs en IA, axé sur l'évaluation des risques d'arrêt cardiaque. Le candidat travaillera avec des données de santé longitudinales pour explorer des méthodes avancées de machine learning, sous la supervision d'experts reconnus. Des compétences en intelligence artificielle et en analyse de données sont requises.
Organisation/Company: CNRS
Department: Centre de recherche en mathématiques de la décision
Research Field: Mathematics, History of Science
Researcher Profile: First Stage Researcher (R1)
Country: France
Application Deadline: 9 Jul 2025 - 23:59 (UTC)
Type of Contract: Temporary
Job Status: Full-time
Hours Per Week: 35
Offer Starting Date: 1 Oct 2025
Funding: Not funded by a EU programme
Related to Research Infrastructure: No
This thesis will be supervised by E. Bacry (CEREMADE, Université de Paris-Dauphine, Institut PR[AI]RIE) and co-supervised by Prof. Xavier Jouven (APHP, INSERM, Institut PR[AI]RIE). Most of the work will be done within the INSERM team (unit U970) at 56 rue Leblanc, 75005 Paris.
The objective of this thesis is to develop dynamic AI models predicting cardiac arrest (CA) risk by exploiting individual medical trajectories from structured temporal data (SNDS and CEMS). The algorithms developed will integrate the longitudinal dimension of care pathways.
Using advanced machine learning methods adapted to longitudinal data (EHR), the project will analyze sequences of diagnoses, medical procedures, and prescriptions to accurately model the evolution of risk over time. Vector representations (embeddings) will be explored to capture the complex interactions between clinical events, particularly using techniques such as Time2Vec (to encode continuous temporal dimensions) or FAN (Fourier Analysis Networks) to capture frequency patterns.
To cope with the large volume of data (long sequences, numerous patients), Transformer architectures will be explored. In particular, the Performer (FAVOR+) model, which is based on a kernelized attention approximation, will efficiently process long clinical sequences thanks to linear complexity, while retaining the ability to model distant dependency relationships.
In addition to Transformer-type or more traditional boosting approaches, several complementary avenues could be explored to enrich risk modeling: Hierarchical Bayesian methods, Temporal stochastic process models, Hawkes processes.