Activez les alertes d’offres d’emploi par e-mail !
Mulipliez les invitations à des entretiens
L'Institut pour la Biologie Intégrative de la Cellule (I2BC) propose un doctorat pour un projet novateur sur la modélisation de protéines en utilisant des signaux évolutifs. Le candidat sélectionné travaillera sous la supervision de Dr. Zea et aura accès à des installations informatiques de haute performance, développant des méthodes pour prédire des interactions protéiques et explorer la diversité conformationnelle.
Organisation/Company: CNRS
Department: Institut de Biologie Intégrative de la Cellule
Research Field: Biological sciences, Computer science, Mathematics
Researcher Profile: First Stage Researcher (R1)
Country: France
Application Deadline: 23 Jun 2025 - 23:59 (UTC)
Type of Contract: Temporary
Job Status: Full-time
Hours Per Week: 35
Offer Starting Date: 1 Sep 2025
Funding: Not funded by a EU programme
Research Infrastructure Staff Position: No
The thesis will be conducted at the Institute for Integrative Biology of the Cell (I2BC), within the Molecular Assemblies and Genome Integrity (MAGI) team. The group operates at the interface between structural bioinformatics and molecular evolution and is embedded in a multidisciplinary lab with experimental and computational researchers.
The PhD student will work under the supervision of Dr. Zea, contributing to the ANR-funded SPPICES project, which focuses on scoring and predicting protein interactions and conformations based on evolutionary signals. They will have access to high-performance computing facilities and collaboration opportunities.
The project involves modeling multiple protein conformations and dynamic protein-protein interfaces using evolutionary signals. The student will develop computational methods to model alternative protein conformations, utilizing AlphaFold2 (AF2) and evolutionary data. The project aims to enhance AF2-based pipelines to explore conformational diversity, design strategies for MSA editing to guide predictions, and investigate how AF2 exploits coevolutionary and conservation signals. Additionally, the project will model dynamic protein-protein interfaces, especially those involving intrinsically disordered regions (IDRs), by combining structural templates with novel scoring methods based on statistical techniques and deep learning.