Activez les alertes d’offres d’emploi par e-mail !
Générez un CV personnalisé en quelques minutes
Décrochez un entretien et gagnez plus. En savoir plus
Une institution de recherche en France propose un stage pour un chercheur à premier stade, centré sur l'amélioration de l'imagerie 3P pour des études tissulaires. Le candidat travaillera dans une équipe dynamique, participant activement à des projets innovants sur l'imagerie de tissus profonds avec des techniques avancées de détection et d'optique adaptative.
Organisation/Company: CNRS
Department: Laboratoire d'optique et biosciences
Research Field: Physics
Researcher Profile: First Stage Researcher (R1)
Country: France
Application Deadline: 7 Jul 2025 - 23:59 (UTC)
Type of Contract: Temporary
Job Status: Full-time
Hours Per Week: 35
Offer Starting Date: 1 Oct 2025
Funding: Not funded by a EU programme
Research Infrastructure Staff Position: No
The project will take place in the 'Advanced microscopies' group of the Lab for Optics and Biosciences at Ecole Polytechnique (LOB). Our team specializes in multiphoton microscopies and their application to tissue studies. The work involves collaboration with a team of ~4 people within a larger microscopy team (~25 persons) and an active network including IOGS, Amplitude, Inst Vision, Pasteur, INMED.
Two-photon (2P) microscopy uses infrared femtosecond lasers (900 nm) to record fluorescence images with 3D cellular resolution at depths of 300-500 µm in scattering tissues, widely used in neuroscience and embryology. However, imaging at greater depths is challenging due to scattering. Recently, three-photon (3P) excitation using new infrared sources (1300-1700 nm, 50 fs, 1 MHz) has enabled imaging beyond 1 mm depth, opening new research possibilities and technological challenges. The group is pioneering 3P imaging with innovative multibeam laser sources.
The project's goal is to enhance 3P imaging performance by combining contrast modalities and exploring its application in deep tissue microscopy of fish and mouse tissues. The work will focus initially on a label-free contrast modality called third-order sum-frequency generation (TSFG) microscopy, which is sensitive to hemoglobin and useful for analyzing blood flow in vivo. The intern will characterize this contrast, optimize simultaneous detection of TSFG and 3P fluorescence signals, and develop advanced techniques such as adaptive optics for aberration correction and multiplane excitation for faster imaging, for deep and long-term tissue imaging.