Activez les alertes d’offres d’emploi par e-mail !
Mulipliez les invitations à des entretiens
La Commission Européenne recherche un chercheur doctoral pour le projet H2MAX, axé sur les mécanismes de stockage d'hydrogène dans les phases MAX. Le candidat bénéficiera d'une expertise précieuse en méthodes expérimentales et computationnelles, développant des compétences clés dans la science des matériaux et la modélisation.
Organisation/Company: Université Lorraine, CNRS, LEM3, IJL
Research Field: Technology > Materials technology > Physics
Researcher Profile: Recognised Researcher (R2), Leading Researcher (R4), First Stage Researcher (R1), Established Researcher (R3)
Country: France
Application Deadline: 30 Aug 2025 - 22:00 (UTC)
Type of Contract: Temporary
Job Status: Full-time
Offer Starting Date: 1 Oct 2025
Funding: Not funded by an EU programme
Research Infrastructure Staff Position: No
The doctoral researcher will join the H2MAX project (Hydrogen storage mechanisms in MAX phases), funded by the Grand-Est region over 36 months.
This project aims to understand how the chemistry of A and M elements, along with crystalline defects, influence hydrogen storage in MAX phases and MXenes.
MAX phases are layered hexagonal carbides and nitrides with the formula Mₙ₊₁AXₙ, combining metallic and ceramic properties. MXenes are derived from MAX phases and are promising for energy storage and catalysis, including hydrogen storage.
The project focuses on specific MAX phases (Ti₃AlC₂, Ti₃SiC₂, Ti₂AlC, Ti₂SiC, V₃AlC₂, V₂AlC) and MXenes (Ti₃C₂, Ti₂C, V₃C₂, V₂C), selected for their relevance to hydrogen storage and availability for synthesis. This allows direct comparison with ab initio simulations.
Experiments will utilize tools at LEM3: hydrogen uptake and kinetics via a Sievert apparatus; microstructure analysis before and after hydrogenation using MICROMAT. Ab initio calculations will be performed with VASP on HPC facilities to compute H insertion and migration energies in pristine and defected structures.
The project may also involve developing machine learning potentials to model complex systems beyond ab initio methods, such as dislocation-H interactions or Mg-MAX interfaces, toward realistic nanocomposites.
This interdisciplinary project requires skills in both experimental and computational methods, providing the researcher with comprehensive expertise valuable in academia and industry. The candidate will gain insights into hydrogen storage phenomena and develop versatile methodologies.
Qualifications:
Beneficial Skills: