Activez les alertes d’offres d’emploi par e-mail !

Impact of Operating Conditions and Utilization Profiles on Solid Oxide Electrolysis Stacks Lifetime

CEA LITEN Grenoble

Auvergne-Rhône-Alpes

Sur place

EUR 45 000 - 60 000

Plein temps

Hier
Soyez parmi les premiers à postuler

Mulipliez les invitations à des entretiens

Créez un CV sur mesure et personnalisé en fonction du poste pour multiplier vos chances.

Résumé du poste

Dans le cadre de la transition vers une économie à faible émission de carbone, un projet de recherche s'oriente vers le développement de modèles de dégradation pour des piles à hydrogène. Le candidat retenu mènera des tests à long terme tout en apportant une contribution significative à la recherche sur l'hydrogène. À travers cette collaboration, de nombreuses publications et conférences sont anticipées, augmentant ainsi la visibilité dans le domaine.

Prestations

Accès à des équipements de pointe
Possibilité de publications dans des revues internationales
Participation à des conférences

Qualifications

  • Doctorat requis avec spécialisation en électrochimie ou recherche énergétique.
  • Compétences en analyse des données et modélisation.
  • Expériences en tests de durabilité souhaitées.

Responsabilités

  • Développement d'un modèle de dégradation pour des piles à hydrogène.
  • Réalisation d'essais de durabilité et analyse des performances.
  • Interaction avec des projets de doctorat satellites.

Connaissances

Analyse électrochimique
Modélisation
Utilisation de circuits électriques
Expérience en essais de durabilité à long terme

Formation

Doctorat en ingénierie, chimie ou domaine connexe

Description du poste

The shift to a low-carbon European Union (EU) economy raises the challenges of integrating renewable energy sources (RES) and cutting the CO2 emissions of energy intensive industries (EII). In this context, hydrogen produced from RES will contribute to decarbonize those industries, as feedstock / fuel / energy storage. According to the pipeline of hydrogen production projects, the annual production of low-emission hydrogen could reach more than 24 Mt H2 by [1]. With its RePowerEU plan (affordable, secure and sustainable energy for Europe) [2], Europe will account for a large portion of this capacity, with a renewable H2 target set to 10 million tons of annual domestic production (~ MW), and an additional 10 million annual tons of imported H2.

Among the different technologies for low carbon H2 production, High temperature electrolysis (HTE) enables the production of green Hydrogen with extremely high efficiency. Indeed, HTE carries promises of system efficiency greater than 90%LHV, a 20% boost compared to Alkaline or PEM electrolyzes particularly relevant in the current context of high electricity prices [3]. The solid oxide cells (SOC) are typically operated in the -to-°C temperature range, and arranged in pile-ups or stacks to increase the overall power density and address (pre-) industrial markets.

The technology has recently entered a phase of aggressive industrialization. However, significant efforts are still required to turn the high efficiencies into a competitive levelized cost of H2 (LCOH). As long as such cost remains largely controlled by that of stack manufacturing, stack degradation and the relationship with operating conditions remain a crucial subject of research and development. Moreover, as demonstration systems get bigger, predicting future stack performance will be paramount to optimizing operation within realistic constraints (e.g. fluctuating power availability and price). Unfortunately, predictive models will be needed significantly before detailed studies of each individual degradation mechanisms can be combined into a global response.

Recent advances have shown that to properly evaluate stack lifetimes, actual testing beyond 5 kh is critical. Indeed, the main driver(s) for degradation may change overtime, complicating any attempts at extrapolation [4,5]. However, to reach extreme test durations, infrastructure and utility networks must be robust and resilient. As a consequence, while the ideal test duration has slowly grown in recent years for 1 to 10 kh, no actual full stack test in electrolysis mode beyond 10 kh has been reported [6–8]. Conversely, several by CEA to reach that milestone have end by the stacks destruction due to failures of utility networks. To make matter worse, the quality of feed networks over time (DI water, H2, N2) can affect the stack response, just as potential emergency shutdowns [8]. In turn, it makes comparing results obtained on different equipment at different time tricky. Consequently, reaching extreme durations with a technology fragile to failures underlines the useful and high industrial and scientific value for accelerated stress tests (AST). Indeed, in theory, AST can shorten test durations and accelerate technology development without compromising the conclusions drawn.

Subject summary

The main objective of this work is the development of a degradation model at stack level, elaborated based on multiple long term durability tests, with a detailed analysis of primarily electrical, electrochemical (obtained through Electrochemical Impedance Spectroscopy EIS), as well as fluidic and thermal behaviors, along with physico-chemical properties (derived from post-mortem analyses). To increase the volume of comparative test data produced, CEA has built a brand-new type of testing equipment, well beyond the state-of-the-art, that will be dedicated to this project. It comprises 4 individual stack test stations, packaged in a maritime container, to be operated simultaneously in parallel and in different conditions over 10 kh. This should allow direct comparison

provided performances are periodically assessed at reference temperature [5,9,10]) and identifying the contributions of individual operating parameters.

This project will combine experimental work (long term test data, EIS data, and (FIB-)SEM / XRD postmortem data of aged samples) to modeling tools (mainly by associating experimental data with equivalent electrical circuits to interpret the underlying physical phenomena, but also by developing degradation laws of individual mechanisms) to produce a representative degradation model. Exploitation of the model should allow both AST development (maximization of degradation), and identification of optimized operating conditions (minimization of degradation).

The successful candidate will be interacting with multiple satellite PhD projects that will exploit some of the data generated in this work. As a result, high visibility and a significant number of publications and participations in conferences are expected.

Management Team

1] Global Hydrogen Review , International Energy Agency, .

2] REPowerEU Plan, European Commission, .

3] Strategic Research and Innovation Agenda, Hydrogen Europe, .

6] G. Corre, A. Brisse, ECS Transactions , 68, –.

8] J. Aicart, L. Tallobre, A. Surrey, B. Gervasoni, C. Geipel, H. Fontaine, S. Desousanobre, J. Mougin, International Journal of Hydrogen Energy , 60, –.

9] M. Hubert, J. Laurencin, P. Cloetens, B. Morel, D. Montinaro, F. Lefebvre-Joud, Journal of Power Sources , , –.

10] F. Monaco, D. Ferreira-Sanchez, M. Hubert, B. Morel, D. Montinaro, D. Grolimund, J. Laurencin, International Journal of Hydrogen Energy , 46, –.

Funding category

Public funding alone (i.e. government, region, European, international organization research grant)

Obtenez votre examen gratuit et confidentiel de votre CV.
ou faites glisser et déposez un fichier PDF, DOC, DOCX, ODT ou PAGES jusqu’à 5 Mo.