Activez les alertes d’offres d’emploi par e-mail !
Générez un CV personnalisé en quelques minutes
Décrochez un entretien et gagnez plus. En savoir plus
Une institution académique de premier plan recherche un chercheur doctoral pour un projet sur le stockage d'hydrogène dans les phases MAX. Vous serez impliqué dans des expériences et des simulations, avec des compétences requises en chimie et en modélisation. Ce projet vous préparera à des carrières de haute valeur dans le milieu académique et industriel après le doctorat.
Social network you want to login/join with:
France
Other
Yes
3d91ba938605
3
30.06.2025
14.08.2025
The doctoral researcher will be part of the team for the H2MAX project, funded by the region Grand-Est over 36 months.
This project aims to understand how the chemistry of the A and M elements and crystalline defects influence hydrogen storage in MAX phases and MXenes.
MAX phases are layered hexagonal carbides and nitrides with the general formula Mₙ₊₁AXₙ, where M is an early transition metal, A is a group IIIA or IVA element, and X is carbon and/or nitrogen. They combine metallic and ceramic properties, including high electrical and thermal conductivity, machinability, and damage tolerance. MXenes are derived by etching A layers from MAX phases, resulting in 2D materials with high surface areas, tunable chemistries, and energy storage applications.
The project focuses on MAX phases such as Ti₃AlC₂, Ti₃SiC₂, Ti₂AlC, Ti₂SiC, V₃AlC₂, V₂AlC, and their corresponding MXenes. These were chosen for their relevance to hydrogen storage and availability for synthesis, enabling comparison with ab initio simulations. This integrated approach bridges experimental and theoretical insights.
Experiments will utilize tools at LEM3: hydrogen uptake and kinetics via a Sievert apparatus, microstructure characterization before and after hydrogenation. Modeling will use VASP on HPC facilities to compute H insertion and migration energies in pristine and defected structures.
Additionally, development of a machine learning potential based on the project’s results may be pursued to model complex systems like dislocation-H interactions or Mg-MAX interfaces, aiming at realistic Mg-MAX nanocomposites.
This interdisciplinary project requires skills in both experimentation and numerical simulation, providing deep insights and mastery of methodologies. The doctoral researcher will be well-positioned for high-value roles in academia and industry post-PhD.
Recommended readings include: