¡Activa las notificaciones laborales por email!

Two Open Phd Positions In Mathematical Statistics With Non-Euclidean Data (OZQ341)

Karlsruhe Institute of Technology

Zaragoza

Presencial

EUR 21.000 - 41.000

Jornada completa

Hace 8 días

Genera un currículum adaptado en cuestión de minutos

Consigue la entrevista y gana más. Más información

Empieza desde cero o carga un currículum

Descripción de la vacante

Le Karlsruhe Institute of Technology propose deux postes de doctorat pleinement financés dans le projet STENED, axés sur les statistiques avancées et les méthodes computationnelles. Les candidats doivent avoir un Master ou un Bachelor en Mathématiques ou en Statistiques, avec un dossier académique remarquable. Ce projet offre l'opportunité de travailler dans un environnement collaboratif et motivé, avec des bourses et des séjours de recherche prévus.

Formación

  • Diplôme de Master ou Bachelor en Mathématiques/Statistiques requis.
  • Dossier académique exceptionnel.
  • Haute motivation.
  • Préférence pour les candidatures féminines et diversité.

Responsabilidades

  • Développer des modèles statistiques paramétriques et semi-paramétriques.
  • Travailler sur des projets de recherche au sein d'une équipe dynamique.

Conocimientos

Motivation
D'excellentes performances académiques

Educación

Master en Mathématiques, Statistiques ou études comparables
Bachelor en Mathématiques, Statistiques ou études comparables

Descripción del empleo

Universidad Carlos III de Madrid and Karlsruhe Institute of Technology

Organisation/Company

Universidad Carlos III de Madrid and Karlsruhe Institute of Technology

Department

Department of Statistics

Research Field
  • Mathematics » Statistics
  • Mathematics » Probability theory
Researcher Profile

First Stage Researcher (R1)

Positions

PhD Positions

Country

Spain

Application Deadline

15 Nov 2025 - 12:00 (Europe/Madrid)

Type of Contract

Temporary

Job Status

Full-time

Offer Starting Date

1 Jan 2025

Other Information

The job is funded through the EU Research Framework Programme and is related to staff positions within a Research Infrastructure.

Offer Description

The 'Stein-based goodness-of-fit TEsts for Non-Euclidean Data' (STENED) project seeks to hire two fully-funded PhD fellows starting in January 2025 (preferably) or June 2025 at the latest. The project aims to develop an overarching inferential toolbox for parametric and semiparametric distribution models on non-Euclidean supports using Stein's method, involving advanced mathematical statistics and computational methods. Funded by the 'AEI-DFG Call for Joint Spanish-German Research Projects', it is a collaboration between KIT and UC3M, co-led by Dr. Bruno Ebner (KIT) and Dr. Eduardo García Portugués (UC3M).

One PhD position is at KIT (Karlsruhe, Germany), and another at UC3M (Leganés, Madrid, Spain). Each position is for three years, with a possibility of a one-year extension, offering competitive salaries: €41,000 gross per year at KIT and €21,000 at UC3M. Funding includes research stays at KIT, UC3M, and other universities. The environment is vibrant, with motivated PhD students.

Candidate Requirements
  • Master in Mathematics, Statistics, or comparable studies (or expected completion in 2024/2025).
  • Bachelor in Mathematics, Statistics, or comparable studies.
  • Outstanding academic record.
  • High motivation.
Application Process

Applicants should send their CV, academic records, motivation letter, and two references to the provided email addresses before the deadline on 15 November 2024. Shortlisted candidates will be interviewed online. Applications from all backgrounds are encouraged, with a preference for gender balance and diversity. Female applicants are especially encouraged to apply.

Additional Information

The original announcement can be found on Kit Empleo: https://www.kitempleo.es/empleo/200457681/two-open-phd-positions-mathematical-statistics-with-non-euclidean-data-ozq341-zaragoza/?utm_source=html

Consigue la evaluación confidencial y gratuita de tu currículum.
o arrastra un archivo en formato PDF, DOC, DOCX, ODT o PAGES de hasta 5 MB.