Aktiviere Job-Benachrichtigungen per E-Mail!

Master thesis AI-Driven Geospatial Data Fusion Leveraging Machine Learning (f/m/x)

BMW Group

München

Vor Ort

EUR 60.000 - 80.000

Vollzeit

Vor 14 Tagen

Zusammenfassung

Le BMW Group offre une opportunité de stage de master en intégration de données géospatiales, visant à améliorer les technologies de conduite autonome. Les candidats doivent avoir de solides compétences en machine learning et être passionnés par l'innovation. Un environnement de travail stimulant et flexible est proposé, avec un accompagnement professionnel complet.

Leistungen

Mentorat et intégration complets
Développement personnel et professionnel
Heures de travail flexibles
Travail mobile
Rémunération attractive et équitable
Appartements pour étudiants (sous réserve de disponibilité)

Qualifikationen

  • Expérience avec Python et frameworks d'apprentissage automatique.
  • Familiarité avec la théorie des graphes et les architectures de réseaux neuronaux.
  • Mentalité proactive avec de solides compétences en résolution de problèmes.

Aufgaben

  • Contribuer à l'avancement des technologies de conduite autonome via l'intégration de données géospatiales.
  • Explorer des solutions innovantes pour fusionner diverses sources de données géospatiales dans sa thèse.
  • Développer un graphe de connaissances pour faciliter l'intégration des données.

Kenntnisse

Problème de résolution
Passion pour l'innovation
Analyse des données
Compétence en programmation (Python)

Ausbildung

Études en apprentissage automatique, analyse de données ou domaine connexe

Tools

Graph Neural Networks
Graph Attention Networks

Jobbeschreibung

SOME IT WORKS. SOME CHANGES WHAT'S POSSIBLE.

SHARE YOUR PASSION.

More than 90% of automotive innovations are based on electronics and software. That's why creative freedom and lateral thinking are so important in the pursuit of truly novel solutions. And that’s why our experts will treat you as part of the team from day one, encourage you to bring your own ideas to the table – and give you the opportunity to really show what you can do.

With the proliferation of geospatial technologies and digital mapping, data sources such as road networks, traffic conditions, lane configurations, and GPS-based sensor data are being generated at an ever-increasing rate. The integration of this data for road network modeling faces several challenges like heterogeneity, fragmentation, and noisiness of data as well as the difficulty to capture the complexity of the road network topological relationships.

What awaits you?

  • You contribute to advancing autonomous driving technologies through the integration of geospatial data.
  • In your master's thesis, you explore innovative solutions to fuse diverse geospatial data sources, addressing challenges such as data heterogeneity and complexity in road network modeling.
  • Here, you leverage a hybrid approach combining Graph Neural Networks and Graph Attention Networks to automatically discover patterns in road networks and model map data at a semantic level.
  • Additionally, you develop a knowledge graph to capture the semantics of geospatial data, facilitating the integration of graph embeddings with machine learning models for enhanced performance and efficiency.

Please note that your thesis must be supervised by a university on your part.


What should you bring along?

  • Studies in machine learning, data analysis, or a related field.
  • Proficiency in programming languages such as Python, along with experience in using libraries and frameworks for machine learning and graph-based models.
  • Familiarity with graph theory and neural network architectures, particularly Graph Neural Networks and Graph Attention Networks.
  • A proactive mindset and problem-solving skills to tackle complex challenges in data integration and modeling.
  • A passion for innovation and a desire to contribute to the future of mobility through advanced data-driven solutions.

Do you have an enthusiasm for new technologies and an innovative environment? Apply now!

What do we offer?

  • Comprehensive mentoring & onboarding.
  • Personal & professional development.
  • Flexible working hours.
  • Mobile work.
  • Attractive & fair compensation.
  • Apartments for students (subject to availability & only at the Munich location).
  • And much more, see bmw.jobs/whatweoffer .

Start date: from 08/11/2025
Duration: 6 months
Working hours: Full-time

Do you have questions? Then submit your inquiry easily via our contact form . Your request will be answered by phone or email afterwards.

At the BMW Group, we place great importance on equal treatment and equal opportunities. Our recruiting decisions are based on the personality, experience, and skills of the applicants. Learn more here .

Hol dir deinen kostenlosen, vertraulichen Lebenslauf-Check.
eine PDF-, DOC-, DOCX-, ODT- oder PAGES-Datei bis zu 5 MB per Drag & Drop ablegen.