
Activez les alertes d’offres d’emploi par e-mail !
A research institute in France is seeking a Ph.D. student to develop a laser-based Surface Acoustic Wave (SAW) biosensor for early disease diagnosis. The role includes designing and fabricating sensors, characterizing their performance, and conducting biochemical protocols. The ideal candidate should possess a Master's degree in a relevant field and have a strong background in optics and acoustics. The project is funded by the EU and offers a supportive research environment.
Surface Acoustic Wave (SAW) devices have emerged as promising candidates for the advancement of rapid, low-cost, lab-on-chip point-of-care biosensors. These biosensing devices offer potential for early disease diagnosis and biomarker monitoring due to their sensitivity in detecting small variations in mechanical properties (i.e. changes in mass, density, rigidity, viscosity) resulting from cellular processes such as division, differentiation, communication and death, as well as subcellular events like DNA replication, protein folding, and organelle biogenesis. However, existing SAW biosensors typically rely on bulky piezoelectric substrates with interdigitated electrodes, which often lack biocompatibility and operate at fixed acoustic frequencies, limiting their sensitivity and agility. Additionally, integrating and interfacing such devices with other biomedical and microfluidic systems poses significant challenges due to their unwieldy electronic settings.
To address these limitations, opto-acoustic techniques present an alternative approach. These techniques utilize laser light to generate and probe high frequency ultrasonic waves. In this project, we propose to leverage opto-acoustic schemes to design and develop a laser-based SAW biosensor operating over a wide frequency spectrum, ranging from tens of MHz up to a GHz. We will use laser-induced diffraction gratings to excite and probe these high-frequency SAWs remotelywithout the need of interdigitated piezoelectric transducers. This biosensor aims to enable fast and efficient detection of cellular and biomolecular processes, including specific antibody-antigen binding events, serving as a proof of concept. Since the sensing mechanism of SAW devices relies primarily on mass-loading to detect binding events, resolution can be limited by the low mass of molecular antibodies. To enhance signal detection and render our sensor more sensitive, we propose to use functionalized biocompatible and biodegradable micro-dropletsas signal amplifiers. Droplets functionalized with antibodies will bind specifically the antigen and enhance the mass-loading by several orders of magnitude. The adhesion of the droplet on the antigen-covered surface will additionally allow us to measure the antigen-antibody binding energy. Finally, we will leverage our droplet-assisted sensitive SAW immuno-sensor to detect typical autoantibodies associated with autoimmune disorders, such as those found in rheumatoid arthritis, type I diabetes, and systemic lupus erythematosus.
As part of this, the Ph.D. student will help implement the necessary tools to :
Starting date
Funding category: EU funding
Funding further details: COFUND