
Aktiviere Job-Benachrichtigungen per E-Mail!
Erstelle in nur wenigen Minuten einen maßgeschneiderten Lebenslauf
Überzeuge Recruiter und verdiene mehr Geld. Mehr erfahren
Eine Forschungsinstitution in Deutschland sucht einen Masteranden zur Entwicklung von innovativen Machine-Learning-Ansätzen zur gesichtsbasierten Altersschätzung. Die Aufgaben umfassen die Evaluierung von Trainingsstrategien und die Präsentation der Ergebnisse. Bewerber sollten gute Kenntnisse in Machine Learning und Python, idealerweise erste Erfahrung mit PyTorch oder OpenCV, mitbringen. Diese Stelle bietet die Möglichkeit zur selbstständigen Zeiteinteilung und Einblicke in die akademische Forschung.
Gesichtbasierte Altersschätzung ist in vielen Anwendungen zentral, wie z.B. in der Kriminalitätsbekämpfung, Identitätsverifizierung, Jugendschutz und auch im medizinischen Bereich. Systeme zur Altersschätzung zeigen häufig unterschiedliche Performance auf Subgruppen (z.B. bzgl. Alter, Geschlecht, ethnische Zugehörigkeit). Gründe sind auf der einen Seite die Verfügbarkeit bzw. Ausgewogenheit der Trainingsdaten und auf der anderen Seite klassische Trainingsverfahren, die globale Metriken optimieren und Probleme in gewissen Subgruppen ignorieren. Techniken wie Oversampling oder probabilistisches Sampling versuchen durch eine statistische Analyse im Vorhinein eine Balanciertheit der Trainingsdaten zu erzeugen mit der Hoffnung, dass dies eine gleichmäßige Performance auf allen Subgruppen erzeugt. Das Ergebnis der Maßnahme fließt jedoch üblicherweise nicht zurück in den Trainingsprozess, dieser bleibt davon unberührt.
Ziel dieser Masterarbeit ist die Entwicklung und systematische Evaluation von Trainingstrategien, die dynamisch zur Laufzeit abhängig von der momentanen Performance auf den Subgruppen den Trainingsprozess anpassen.
Die entwickelten Verfahren sollen es erlauben, ausgeglichene, aber auch spezialisierte Computer-Vision-Modelle zu trainieren, insbesonderen im Bereich der gesichtsbasierten Altersschätzung. Es werden geeignete und erfolgreiche Maßnahmen präsentiert, Leitlinien, wann welche Strategie (oder Kombination) wirkt, aber auch Einschränkungen, Fallstricke und unerwartete Ergebnisse. Die Verfahren werden anhand von frei verfügbaren Benchmark-Datensätzen evaluiert und mit existierenden Verfahren verglichen. Der verwendete Code ist gut dokumentiert, wiederverwendbar und die Ergebnisse sind reproduzierbar.
Wir wertschätzen und fördern die Vielfalt der Kompetenzen unserer Mitarbeitenden und begrüßen daher alle Bewerbungen – unabhängig von Alter, Geschlecht, Nationalität, ethnischer und sozialer Herkunft, Religion, Weltanschauung, Behinderung sowie sexueller Orientierung und Identität. Schwerbehinderte Menschen werden bei gleicher Eignung bevorzugt eingestellt. Unsere Aufgaben sind vielfältig und anpassbar – für Bewerber*innen mit Behinderung finden wir gemeinsam Lösungen, die ihre Fähigkeiten optimal fördern.
Mit ihrer Fokussierung auf zukunftsrelevante Schlüsseltechnologien sowie auf die Verwertung der Ergebnisse in Wirtschaft und Industrie spielt die Fraunhofer-Gesellschaft eine zentrale Rolle im Innovationsprozess. Als Wegweiser und Impulsgeber für innovative Entwicklungen und wissenschaftliche Exzellenz wirkt sie mit an der Gestaltung unserer Gesellschaft und unserer Zukunft.
Fraunhofer-Institut für Sichere Informationstechnologie SIT
www.sit.fraunhofer.de
Kennziffer: 82685 Bewerbungsfrist: