Job Search and Career Advice Platform

Activez les alertes d’offres d’emploi par e-mail !

Post-doctoral position on Multimodal Machine Learning for PET/CT and PET/MRI Image Reconstruction

France Life Imaging

Orsay

Sur place

EUR 125 000 - 150 000

Plein temps

Il y a 30+ jours

Générez un CV personnalisé en quelques minutes

Décrochez un entretien et gagnez plus. En savoir plus

Résumé du poste

Un laboratoire d'imagerie biomédicale Multimodal recherche un post-doctorant pour contribuer au projet MultiRecon. Le candidat sera impliqué dans le développement d'algorithmes d'optimisation en machine learning pour améliorer la qualité des images. Ce rôle offre l'occasion de travailler avec des systèmes d'imagerie avancés en collaboration avec des partenaires de recherche.

Qualifications

  • Doctorat dans un domaine pertinent tel que l'imagerie biomédicale.
  • Compétences avancées en machine learning appliquées à la reconstruction d'images.
  • Capacité à travailler sur des données multimodales.

Responsabilités

  • Développer de nouveaux algorithmes d'optimisation pour la reconstruction d'images.
  • Intégrer ces algorithmes dans la plateforme open-source CASToR.
  • Évaluer et appliquer les techniques à des données PET/CT et PET/MRI.

Connaissances

Machine Learning
Deep Learning
Optimisation
Reconnaissance d’images multimodales

Formation

Doctorat en imagerie biomédicale, physique ou équivalent

Outils

CASToR reconstruction platform
Description du poste

Type de structure : A two-year post-doctoral position is opened in the ANR funded MultiRecon project, a collaboration between the LaTIM in Brest, CREATIS lab in Lyon, BioMaps in Orsay, and the Poitiers University Hospital.
The recruited person will by employed by CEA and affiliated to BioMaps (Orsay).

Contexte et mission : Contexte et mission :
Positron Emission Tomography (PET) is a medical imaging modality that measures in vivo biochemical processes that play a key role in the onset and progression of a disease. Main applications of PET are oncology, neurology and cardiology. PET is a functional modality and is always associated with a complementary anatomical modality such as X-ray Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). PET images are obtained by tomographic reconstruction, which is the task of estimating an image from measurement data collected by the acquisition system. PET reconstruction is an ill-posed inverse problem and poor Signal-to-Noise Ratio (SNR) in the collected data translates into degraded image quality. While shorter acquisitions and low-dose are preferable due to time constraints and patient exposure to radiations, they result in lower SNR. The challenge of image reconstruction is therefore to reconstruct an image from a short/low-dose acquisition with acceptable noise.
Recent machine learning techniques for PET reconstruction have pushed towards less noise [1]. They offer the possibility to reduce the patient dose and the acquisition time without degrading the image quality. These techniques are in their infancy and their utilization mostly limited to single modality images. Multimodal machine learning (MML) aims at buildings models that can process and relate information from multiple modalities.
In the MultiRecon project we develop new machine learning reconstruction techniques for PET/CT and PET/MRI multimodal imaging systems. The hypothesis is that combining the raw data from different modalities with machine learning and deep learning based models can further reduce the noise and improve the image quality. More specifically, the candidate will:
• Contribute to the development of new optimization algorithms for multimodal machine learning image reconstruction;
• Integrate these optimization algorithms in the open-source CASToR reconstruction platform [2];
• Apply and evaluate these techniques to PET/CT and PET/MRI data acquired by the project partners.

Lieu : Multimodal Biomedical Imaging Laboratory (BioMaps), University of Paris-Saclay / French Atomic Energy Commission (CEA), Orsay, France

Contact : For more details on the position, please contact Claude Comtat (claude.comtat@universite-paris-saclay.fr) and Florent Sureau (florent.sureau@universite-paris-saclay.fr). To apply, send your CV, a cover letter and your PhD grade.

Obtenez votre examen gratuit et confidentiel de votre CV.
ou faites glisser et déposez un fichier PDF, DOC, DOCX, ODT ou PAGES jusqu’à 5 Mo.