
¡Activa las notificaciones laborales por email!
Genera un currículum adaptado en cuestión de minutos
Consigue la entrevista y gana más. Más información
Una empresa farmacéutica busca un Data Scientist Lead para gestionar y analizar datos relacionados con el desarrollo de fármacos. El candidato ideal debe tener al menos una maestría o doctorado en campos relacionados y 3+ años de experiencia en análisis en la industria. Las responsabilidades incluyen el desarrollo de modelos predictivos y la colaboración en estrategias de negocio. Se valorará la experiencia con herramientas como Python, R y plataformas de visualización.
Social network you want to login/join with:
col-narrow-left
Discover International
Other
-
Yes
col-narrow-right
645219106653890150432460
2
23.07.2025
06.09.2025
col-wide
Job Title: Data Scientist Lead
Responsibilities:Data Analysis : Manage and analyze pharmaceutical datasets (clinical trials, patents, research, market data) to identify promising drug candidates.Predictive Modeling : Develop or collaborate with vendors to create machine learning models predicting the success and market potential of assets.Collaboration : Work with scientists and executives to align data insights with pipeline strategy.Competitive Insights : Monitor industry trends, identify gaps in therapeutic areas, and suggest partnership or acquisition opportunities.Data Sourcing & Cleaning : Process and analyze data from various sources (FDA, EMA, PubMed, pharma databases).Visualization & Reporting : Develop dashboards and reports to present findings clearly.
Key Skills:Technical : Proficient in Python, R, SQL, and machine learning for predictive analytics and natural language processing (NLP).Pharma Tools : Familiarity with pharma databases and cheminformatics tools (e.g., RDKit, Bioconductor).Data Visualization : Skilled in tools like Tableau, Power BI, Matplotlib, Plotly.AI Expertise : Knowledge in AI for drug development is a plus.Vendor Management : Ability to oversee and manage vendors and suppliers.Strategic Insight : Understanding of data science trends and their application in pharma.
Domain Knowledge:Therapeutics : Knowledge of disease biology, drug mechanisms, and pharmacokinetics.Regulatory : Familiarity with FDA/EMA approval processes and clinical trials.Business Acumen : Understanding of pharma M&A trends and partnerships.
Soft Skills:Strong communication skills to translate technical findings to business strategy.Analytical thinking and problem-solving in uncertain data scenarios.Team-oriented and motivated to contribute in a biotech environment.
Requirements:Education: Master’s/PhD in Data Science, Bioinformatics, Computational Biology, or similar.Experience: 3+ years in pharma/biotech analytics or drug development.Technical Proficiency: Expertise in Python, R, SQL, and cheminformatics.Domain Knowledge: Familiarity with clinical trials, regulatory processes, and therapeutic areas.
Preferred Qualifications:Experience with pharma datasets (e.g., IQVIA, Clarivate).Knowledge of emerging trends like AI-driven drug discovery.Familiarity with cloud platforms (AWS, Azure, GCP).Ongoing commitment to professional development.